• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Ming-jing, XI Bang-lu, SHEN Zhi-fu, DAI Yong-sheng. DEM analyses of horizontal pushing resistance under different gravity fields[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1300-1306. DOI: 10.11779/CJGE201507017
Citation: JIANG Ming-jing, XI Bang-lu, SHEN Zhi-fu, DAI Yong-sheng. DEM analyses of horizontal pushing resistance under different gravity fields[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1300-1306. DOI: 10.11779/CJGE201507017

DEM analyses of horizontal pushing resistance under different gravity fields

More Information
  • Received Date: July 15, 2014
  • Published Date: July 19, 2015
  • On the lunar surface, the gravity is only 1/6g while it is 1g on the earth surface. Investigating the effects of gravity has great significance to the optimization of excavator designed for lunar excavation. DEM is employed to simulate excavation tests with different excavation depths and gravity fields. The effects of gravity on excavation force, energy consumption and sliding surface are studied. Then the relation among excavation force, depth and gravity is fitted. The results show that the excavation force and energy consumption increase with the gravity while the range of affected area decreases. The excavation force increases with depth.
  • [1]
    欧阳自远. 月球科学概论[M]. 北京: 中国宇航出版社, 2005. (OU YANG Zi-yuan. Introduction to lunar science[M]. Beijing: China Astronautic Publishing House, 2005. (in Chinese))
    [2]
    KING R H, VAN SUSANTE P, GEFREH M A. Analytical models and laboratory measurements of the soil-tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths[J]. Journal of Terramechanics, 2011, 48(1): 85-95.
    [3]
    GREEN A, ZACNY K, PESTANA J, et al. Investigating the effects of percussion on excavation forces[J]. Journal of Aerospace Engineering, 2012, 26(1): 87-96.
    [4]
    BOLES W W, SCOTT W D, CONNOLLY J F. Excavation force in reduced gravity environment[J]. Journal of Aerospace Engineering, 1997, 10(2): 99-103.
    [5]
    BOLES W W, CONNOLLY J F. Lunar excavation research[C]// Engineering, Construction, and Operations in Space V. 1996: 1903-1906.
    [6]
    OBERMAYR M, DRESSLER K, VRETTOS C, et al. Prediction of draft forces in cohesionless soil with the discrete element method[J]. Journal of Terramechanics, 2011, 48(5): 347-358.
    [7]
    HETTIARATCHI D R P, REECE A R. Symmetrical three-dimensional soil failure [J]. Journal of Terramechanics, 1967, 4(3): 45-67.
    [8]
    GODWIN R J, SPOOR G. Soil failure with narrow tines [J]. Journal of Agricultural Engineering Research, 1977, 22(3): 213-228.
    [9]
    KOBAYASHI T, OCHIAI H, FUHAGAWA S, et al. A proposal for estimating strength parameters of lunar surface from soil cutting resistance[C]// Earth and Space, 2006: 1-8.
    [10]
    MCKYES E, ALI O S. The cutting of soil by narrow blades[J]. Journal of Terramechanics, 1977, 14(2): 43-58.
    [11]
    NAKASHIMA H, SHIOJI Y, TATEYAMA K, et al. Specific cutting resistance of lunar regolith simulant under low gravity conditions[J]. Journal of Space Engineering, 2008, 1: 58-68.
    [12]
    BUI H H, KOBAYASHI T, FUKAGAWA R, et al. Numerical and experimental studies of gravity effect on the mechanism of lunar excavations[J]. Journal of Terramechanics, 2009, 46(3): 115-124.
    [13]
    郑 敏, 蒋明镜, 申志福. 简化接触模型的月壤离散元数值分析[J]. 岩土力学, 2011, 31(增刊): 766-771. (ZHENG Min, JIANG Ming-jing, SHEN Zhi-fu. Discrete element numerical analysis of lunar soil with a simplified contact model[J]. Rock and Soil Mechanics, 2011, 31(S0): 766-771. (in Chinese))
    [14]
    JIANG M J, SHEN Z F, THORNTON C. Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J]. Computers and Geotechnics, 2013, 54: 104-116.
    [15]
    Lunar and Planetary Institute, Lunar samples by category, soil:10085.Coarse-fines.http://curator.jsc.nasa.gov/lunar/lsc/10085.pdf.
    [16]
    PERKO H, NELSON J, SADEH W. Surface cleanliness effect on lunar soil shear strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 27(4): 371-383.
    [17]
    ADAMSON A W. Physical chemistry of surfaces[M]. New York: Wiley, 1990.
    [18]
    JIANG M J, LI L Q, SUN Y G. Properties of TJ-1 lunar soil simulant[J]. Journal of Aerospace Engineering, 2011, 25(3): 463-469.
    [19]
    蒋明镜, 李立青. TJ-1 模拟月壤的研制[J]. 岩土工程学报, 2011, 33(2): 209-214. (JIANG Ming-jing, LI Li-qing. Development of TJ-1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209-214. (in Chinese))
    [20]
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(5): 579-597.
    [21]
    JIANG M J, YU H S, HARRIS D. A novel discrete model for granular material incorporating rolling resistance[J]. Computers and Geotechnics, 2005, 32(5): 340-357.
    [22]
    NAKASHIMA H, SHIOJI Y, KOBAYASHI T, et al. Determining the angle of repose of sand under low-gravity conditions using discrete element method[J]. Journal of Terramechanics, 2011, 48(1): 17-26.
    [23]
    SHMULEBICH I, ASAF A, RUBINSTEIN D. Interaction between soil and a wide cutting blade using the discrete element method[J]. Soil and Tillage Research, 2007, 97(1): 37-50.
    [24]
    GODWIN R J, O’DOGHERTY M J, SAUNDERS C, et al. A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties, plough geometric factors and ploughing speed[J]. Biosystems Engineering, 2007, 97(1): 117-129.
  • Cited by

    Periodical cited type(3)

    1. 方薇,张万东兴,王亮亮,王艺伟,刘恬. 加筋式重力挡土墙主动土压力极限分析上限解. 武汉大学学报(工学版). 2025(04): 574-582 .
    2. 陈汝先. 废旧轮胎加筋路基现场试验研究. 山西交通科技. 2024(04): 5-8 .
    3. 方薇,唐深琛,张万东兴,王亮亮. 基于楔体滑动的结合式加筋重力墙主动土压力. 土木工程学报. 2024(11): 106-116 .

    Other cited types(9)

Catalog

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return