• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Xian-wei, KONG Ling-wei, ZANG Meng. Engineering geological characteristics of basalt residual soils in Leizhou Peninsula[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 855-863. DOI: 10.11779/CJGE201405007
Citation: ZHANG Xian-wei, KONG Ling-wei, ZANG Meng. Engineering geological characteristics of basalt residual soils in Leizhou Peninsula[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 855-863. DOI: 10.11779/CJGE201405007

Engineering geological characteristics of basalt residual soils in Leizhou Peninsula

More Information
  • Received Date: September 22, 2013
  • Published Date: May 20, 2014
  • The basalt residual soil in Leizhou Peninsula is special regional soil. Comprehensive and systematic evaluation of engineering geological characteristics of the basalt residual soil can provide a certain theoretical support for its engineering investigation and construction. It is formed from the basalt by a long period of weathering and laterization, and the soil particles in the upper layer are smaller than those in the lower layer. Its clay mineral is mainly kaolin, furthermore, it contains more free iron oxide and free aluminium oxide. Its microstructure is mainly clot and flocculation structure, and the pores with a size of greater than 1 μm are more than 70% of the total porosity. The basalt residual soil has poor physical properties of high porosity, low density, high liquid limit and possesses better mechanical properties of high strength because of special composition and microstructure. The basalt residual soil has small expansibility, great shrinkage, insignificant tamping compatibility, and poor water resistance, and its mechanical properties are deteriorated significantly after immersion in water. And the basalt residual soil is more sensitive to the environmental factors such as temperature and humidity. The cementing materials of skeleton will dehydrate and exhibit aging in hot and wet climate, and thus their structural strength is weakened and microstructure is disturbed and damaged. The soils after immersion show serious disintegration and large collapsible deformation. Therefore, geotechnical engineers should pay close attention to engineering disasters due to strong shrinkage and meteoric water.
  • [1]
    唐大雄, 王 清, 张庆云, 等. 雷琼地区玄武岩残积红土的工程地质研究[J]. 长春地质学院学报, 1992, 22(3): 317-323. (TANG Da-xiong, WANG Qing, ZHANG Qing-yun, et al. Engineering geological study of residual laterite soil of basalt in Lei-qiong region[J]. Jouranal of Changchun University of Earth Sciences, 1992, 22(3): 317-323. (in Chinese))
    [2]
    SINGH H, HUAT B B K. Origin, formation and occurrence of tropical residual soils[M]// HUAT B B K, SEE-SEW G, ALI F H, eds. Tropical Residual Soils Engineering. London: Taylor & Francis, 2004.
    [3]
    RAHARDJOA H, AUNG K K, LEONG E C, et al. Characteristics of residual soils in Singapore as formed by weathering[J]. Engineering Geology, 2004, 73(1): 157-169.
    [4]
    VAUHGAN P R, MACCARINI M, MOKHTAR S M. Indexing the engineering properties of residual soil[J]. Quarterly Journal of Engineering Geology, 1988, 21: 69-84.
    [5]
    王国华, 陈海明. 雷州半岛玄武岩残积土工程特性试验[J].华北水利水电学院学报, 2011, 32(3): 67-71. (WANG Guo-hua, CHEN Hai-ming. Experimental study on engineering properties of residual soil of basalt in Leizhou Peninsula[J]. Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2011, 32(3): 67-71. (in Chinese))
    [6]
    OLA S A. Permeability of three compacted tropical soils[J]. Quarterly Journal of Engineering Geology, 1980, 13(2): 87-95.
    [7]
    LOGANATHAN N, SURAJ D S, THURAIRAJAH A. Strength correlation factor for residual soils[J]. Journal of Geotechnical Engineering, 1992, 118(4): 593-610.
    [8]
    RAO S M, REVANASIDDAPPA K. Influence of cyclic wetting drying on collapse behaviour of compacted residual soil[J]. Geotechnical and Geological Engineering, 2006, 24(3): 725-734.
    [9]
    OLIVEIRA M T G D, FORMOSO M L L, TRESCASES J J, et al. Clay mineral facies and lateritization in basalts of the southeastern Parana Basin, Brazil[J]. Journal of South American Earth Sciences, 1998, 11(4): 365-377.
    [10]
    WESLEY L D. Influence of Structure and Composition on Residual Soils[J]. Journal of Geotechnical Engineering, 1990, 116(4): 589-603.
    [11]
    王 清, 唐大雄, 张庆云, 等. 中国东部花岗岩残积土物质成分和结构特征的研究[J]. 长春地质学院学报, 1991, 21(1): 73-81. (WANG Qing, TANG Da-xiong, ZHANG Qing-yun, et al. A study on the structure and composition of granite residual soil in the eastern China[J]. Journal of Changchun University of Earth Science, 1991, 21(1) : 73-81. (in Chinese))
    [12]
    LAN H X, HU R L, YUE Z Q, et al. Engineering and geological characteristics of granite weathering profiles in South China[J]. Journal of Asian Earth Science, 2003, 21(4): 353-364.
    [13]
    王参松, 雷学文, 孟庆山, 等. 贵州红棕色玄武岩风化土强度试验研究[J]. 工程勘察, 2012, 40(1): 12-15. (WANG Can-song, LEI Xue-wen, MENG Wing-shan, et al. Testing study on strength of red-brown soil of weathered basalt soil in Guizhou[J]. Geotechnical Investigation and Surveying, 2012, 40(1): 12-15. (in Chinese))
    [14]
    劳国利. 海南岛土类的分布概况及物理力学特性[J].岩土力学, 1988, 9(4): 51-61. (LAO Guo-li. Distribution survey of soils in the Hainan Island and their physic-mechanical properties[J]. Rock and Soil Mechanics, 1988, 9(4): 51-61. (in Chinese))
    [15]
    LOHNES R A, DEMIREL T. Geotechnical properties of residual tropical soils[C]// Proceeding of ASCE Convention. Huston, 1983: 150-166.
    [16]
    GUTIERREZ N H, NOBREGA M T, VILAR O M. Influence of the microstructure in the collapse of a residual clayey tropical soil[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(1): 107-116.
    [17]
    秦 刚, 廖义玲. 红黏土的“反剖面”特征及其形成条件分析[J]. 贵州地质, 1994, 11(1): 89-93. (QIN Gang, LIAO Yi-ling. ‘Reverse profile’ of adamic earth and the conditions for its formation[J]. Guizhou Geology, 1994, 11(1): 89-93. (in Chinese))
    [18]
    高国瑞. 中国红土的微结构和工程性质[J]. 岩土工程学报, 1985, 7(5): 10-21. (GAO Guo-rui. The microstructures and engineering properties of red soil in China[J]. Chinese Journal of Geotechnical Engineering, 1985, 7(5): 10-21. (in Chinese))
    [19]
    谭罗荣. 关于黏土岩崩解、泥化机理的讨论[J]. 岩土力学, 2001, 22(1): 1-5. (TAN Luo-rong. Discussion on mechanism of disintegration and argillitization of clay-rock[J]. Rock and Soil Mechanics, 2001, 22(1): 1-5. (in Chinese))
    [20]
    张 抒, 唐辉明. 非饱和花岗岩残积土崩解机制试验研究[J]. 岩土力学, 2013, 34(6): 1668-1674. (ZHANG Shu, TANG Hui-ming. Experimental study of disintegration mechanism for unsaturated granite residual soil[J]. Rock and Soil Mechanics, 2013, 34(6): 1668-1674. (in Chinese))
    [21]
    杨荫华, 柏树田. 红土干燥脱水不可逆性对物理力学性质的影响[J]. 岩土工程学报, 1982, 4(4): 104-113. (YANG Yin-hua, BAI Shu-tian. The influence of irreversibility of desiccation of lateritic soils on their physic-mechanical properties[J]. Chinese Journal of Geotechnical Engineering, 1982, 4(4): 104-113. (in Chinese))
    [22]
    ASTM D 5333—92. Standard test method for measurement of collapse potential of soils[S]. West Conshohocken, PA, 2002: 1197-1199.
    [23]
    GB 50025—2004湿陷性黄土地区建筑规范[S]. 2004. (GB 50025—2004 Code for building construction in collapsible loess regions[S]. 2004. (in Chinese))
    [24]
    FEDA J. Mechanisms of collapse of soil structure[M]// DERBYSHIRE E, ed. Genisis and properties of collapsible soils, NATO Series C: Mathematical and Physisical Sciences. Dordrecht: Kluwer. 1994, 468: 149-172.
  • Related Articles

    [1]SUN Hui, LI Bo, WANG Zhipeng, WANG Shuai. Centrifugal model tests on characteristics of deep foundation pits in starting well of shield tunneling machine[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 244-248. DOI: 10.11779/CJGE2024S10038
    [2]YUAN Guangzong, LI Jiandong. Centrifugal model tests on influences of loads of a coal storage yard on foundation and pile-based coal shed[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(S1): 197-201. DOI: 10.11779/CJGE2024S10029
    [3]WEI Gang, HAO Wei, WEI Xin-jiang, WANG Xiao. Indoor model tests on the construction of vertical pipe jacking in shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 62-71. DOI: 10.11779/CJGE202201005
    [4]ZHU Xiang-xu, XU Zhao-chen, ZHANG Ding-wen, WU Tong-dong, MA Fei-peng. Behaviors of supporting structures of asymmetrically loaded deep excavation in hard soil layer[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 166-169. DOI: 10.11779/CJGE2021S2040
    [5]RAN Qi-ren, WANG Xu, WANG Bo-lin, JIANG Dai-jun, ZHANG Yan-jie, LI Jian-dong. Model tests on influences of excavation of foundation pits on bending moment and deformation of pile foundation of adjacent buildings[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 132-137. DOI: 10.11779/CJGE2021S1024
    [6]WEI Gang, WANG Chen, CAI Shi-qi, XU Xun, HONG Zi-han, CUI Cheng-hong, XU Yin-feng. Model tests on influences of quasi-rectangular shield construction on underground pipelines[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1489-1495. DOI: 10.11779/CJGE201908013
    [7]DING Yong, WANG Ping, LI Peng-fei, XIA Tao, TANG Jin-long. Monitoring technology of deformation of continuous concrete wall based on BOTDA[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 500-503. DOI: 10.11779/CJGE2014S2087
    [8]XIANG Bo, MA Jian-lin, HE Yun-yong, ZHOU Li-rong. Prototype tests on micro-steel pipe piles as retaining structures[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2131-2138.
    [9]WU Xiaojiang, LIU Guobin, LU Lishun. Research on approximate method of calculating bending moment based on lateral deformation of diaphragm walls[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1086-1090.
    [10]Dong Jianguo, Yang Min, Zhao Xihong. Bending Moment for Piled Raft (or Piled Box) Foundation[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(4): 32-37.
  • Cited by

    Periodical cited type(15)

    1. 陆勇星. 工序能力指数下尺寸配合关系模糊可靠性研究. 内燃机与配件. 2025(10): 72-74 .
    2. 李志国,徐涛,刘永杰,赵立春,徐勇超,杨天鸿,郑小斌. 露天矿边坡稳定性的层次分析-模糊综合评价耦合分析. 中国地质灾害与防治学报. 2024(01): 116-123 .
    3. 孙昊,董清志,刘亚军,夏自卿. 考虑参数模糊性的头道河Ⅱ号滑坡可靠度分析. 土工基础. 2024(04): 660-663 .
    4. 熊毅,董舒,吴世鹏. 多层边坡可靠度计算随机响应面法及配点方法研究. 采矿技术. 2023(02): 92-98 .
    5. 张继旭,王林峰,黄晓明,谭国金. 双向地震动的随机性对倾倒式危岩模糊可靠度的影响. 工程科学与技术. 2023(06): 161-171 .
    6. 夏清,胡超群,宫琦. 某动车组柴田式密接车钩RAMS分析. 铁道技术标准(中英文). 2023(09): 23-32 .
    7. 仝霄金,丁刚,魏汝明,陈训龙. 双向地震荷载下崩塌堆积体盲数稳定可靠性分析. 地震工程学报. 2022(02): 258-263 .
    8. 张继旭,王林峰,夏万春. 基于模糊失效准则的危岩稳定可靠度计算. 防灾减灾工程学报. 2022(04): 695-704 .
    9. 郑捷宁,魏业文. 自然环境输电线及绝缘子覆冰状态多维度评估. 计算机仿真. 2021(01): 88-91+186 .
    10. 李文剑,潘卫东,李浩军,朱艾路. 地下停车场施工安全评价应用研究. 科技通报. 2021(05): 78-82+88 .
    11. 吴超瑜,陈文霞,潘健. 两种不同类型土坡的失效风险定量计算方法探讨. 广东水利水电. 2021(06): 1-5 .
    12. 钱龙,王刚,李梦瑶,李向鹏. 重力坝坝基多斜面抗滑稳定模糊体系可靠度研究. 水利与建筑工程学报. 2020(02): 117-122 .
    13. 王步云,倪鸣,郭晨,陈波. 短期光伏发电功率区间预测. 电子设计工程. 2019(13): 41-44+48 .
    14. 陶永霞,秦净净,于洋. 闸室抗滑稳定的模糊随机可靠度分析. 水力发电. 2019(11): 49-52 .
    15. 曾源林. 关于隶属函数的确定及应用探讨. 智富时代. 2018(10): 173 .

    Other cited types(15)

Catalog

    Article views (583) PDF downloads (694) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return