• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Yun, YANG Zhongfang, ZHANG Peng, LING Daosheng. Calculation of loosening earth pressure in deep trapdoor tests on unsaturated sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 769-778. DOI: 10.11779/CJGE20231127
Citation: ZHAO Yun, YANG Zhongfang, ZHANG Peng, LING Daosheng. Calculation of loosening earth pressure in deep trapdoor tests on unsaturated sandy soils[J]. Chinese Journal of Geotechnical Engineering, 2025, 47(4): 769-778. DOI: 10.11779/CJGE20231127

Calculation of loosening earth pressure in deep trapdoor tests on unsaturated sandy soils

More Information
  • Received Date: November 18, 2023
  • Available Online: October 30, 2024
  • The loosening earth pressure acting on the deep trapdoor test is of great significance for the interaction analysis between soils and structures. The traditional model for soil arching and the solutions for loosening earth pressure mainly focus on dry and fully saturated soils. The unsaturated conditions commonly encountered in engineering practice are seldom considered. Based on the ABAQUS finite element software, a series of numerical deep trapdoor tests are conducted to study the model for soil failure by considering the effects of soil saturation. Then, an analytical model for the calculation of the loosening earth pressure is established according to the influences of soil saturation. By combining the major principal arc arch theory with the shear strength theory of unsaturated soils, the analytical solutions for the height of the loose zone and the loosening earth pressure are proposed. The rationality of the proposed model is verified by comparing the results with those of unsaturated trapdoor tests, existing analytical solutions and numerical simulations. The results of parameter analysis show that with the increase of the soil saturation, the loosening earth pressure exhibits a decreasing trend first and then an increasing trend at the critical saturation point, and the value of the loosening earth pressure reaches its minimum value. With the increase of the relative depth ratio, the loosening earth pressure shows a slowly decreasing trend.
  • [1]
    TERZAGHI K. Theoretical Soil Mechanics[M]. New York: Wiley, 1943.
    [2]
    张宇, 陶连金, 刘军, 等. 考虑主应力偏转和土拱效应的干砂盾构隧道掌子面极限支护力计算方法研究[J]. 岩土工程学报, 2023, 45(3): 530-540. doi: 10.11779/CJGE20211349

    ZHANG Yu, TAO Lianjin, LIU Jun, et al. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. (in Chinese) doi: 10.11779/CJGE20211349
    [3]
    张常光, 吴凯, 隋建浩. 基于小主应力轨迹的上埋式涵管竖向土压力非线性描述[J]. 岩土工程学报, 2021, 43(12): 2200-2208. doi: 10.11779/CJGE202112006

    ZHANG Changguang, WU Kai, SUI Jianhao. Nonlinear descriptions of vertical earth pressure against positive buried pipelines based on minor principal stress trajectory[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2200-2208. (in Chinese) doi: 10.11779/CJGE202112006
    [4]
    王涛, 姬建. 砂土边坡桩间水平土拱机理与演变规律离散元分析[J]. 岩土工程学报, 2024, 46(8): 1742-1752. doi: 10.11779/CJGE20230309

    WANG Tao, JI Jian. DEM analysis of the mechanism and evolution of horizontal soil arching between piles in sandy slope[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1742-1752. (in Chinese) doi: 10.11779/CJGE20230309
    [5]
    WANG H L, CHEN R P, CHENG W, et al. Full-scale model study on variations of soil stress in geosynthetic-reinforced pile-supported track bed with water level change and cyclic loading[J]. Canadian Geotechnical Journal, 2019, 56(1): 60-68. doi: 10.1139/cgj-2017-0689
    [6]
    LAI F W, YANG D Y, LIU S Y, et al. Towards an improved analytical framework to estimate active earth pressure in narrow c–ϕ soils behind rotating walls about the base[J]. Computers and Geotechnics, 2022, 141: 104544. doi: 10.1016/j.compgeo.2021.104544
    [7]
    COSTA Y D J, ZORNBERG J G. Active and passive arching stresses outside a deep trapdoor[J]. Acta Geotechnica, 2020, 15(11): 3211-3227. doi: 10.1007/s11440-020-00969-x
    [8]
    LIANG L J, XU C J, CHEN Q Z, et al. Experimental and theoretical investigations on evolution of soil-arching effect in 2D trapdoor problem[J]. International Journal of Geomechanics, 2020, 20(6): 06020007. doi: 10.1061/(ASCE)GM.1943-5622.0001643
    [9]
    LIU C, ZHANG S L, ZHANG D L, et al. Model tests on progressive collapse mechanism of a shallow subway tunnel in soft upper and hard lower composite strata[J]. Tunnelling and Underground Space Technology, 2023, 131: 104824. doi: 10.1016/j.tust.2022.104824
    [10]
    WAN T, LI P F, ZHENG H, et al. An analytical model of loosening earth pressure in front of tunnel face for deep-buried shield tunnels in sand[J]. Computers and Geotechnics, 2019, 115: 103170. doi: 10.1016/j.compgeo.2019.103170
    [11]
    LIN X T, SU D, SHEN X, et al. Effect of tunnelling-induced ground loss on the distribution of earth pressure on a deep underground structure[J]. Computers and Geotechnics, 2022, 147: 104781.
    [12]
    LIN X T, CHEN R P, WU H N, et al. Calculation of earth pressure distribution on the deep circular tunnel considering stress-transfer mechanisms in different zones[J]. Tunnelling and Underground Space Technology, 2022, 119: 104211. doi: 10.1016/j.tust.2021.104211
    [13]
    宫全美, 张润来, 周顺华, 等基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. doi: 10.11779/CJGE201701008

    GONG Quanmei, ZHANG Runlai, ZHOU Shunhua, et al. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. (in Chinese) doi: 10.11779/CJGE201701008
    [14]
    LAI F W, CHEN S X, XUE J F, et al. New analytical solutions for shallow cohesive soils overlying trench voids under various slip surfaces[J]. Transportation Geotechnics, 2020, 25: 100411.
    [15]
    CHEN F Q, LUO S C, LAI F W. New analytical solutions for cohesive–frictional soils above deep active trapdoors[J]. International Journal of Geomechanics, 2022, 22(12): 04022235.
    [16]
    LIANG L J, XU C J. Numerical and theoretical research on stress distribution in the loosening zone of the trapdoor problem[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(7): 1426-1447. doi: 10.1002/nag.2906
    [17]
    崔蓬勃, 朱永全, 刘勇, 等. 非饱和砂土隧道土拱效应模型试验及颗粒流数值模拟研究[J]. 岩土力学, 2021, 42(12): 3451-3466.

    CUI Pengbo, ZHU Yongquan, LIU Yong, et al. Model test and particle flow numerical simulation of soil arch effect for unsaturated sandy soil tunnel[J]. Rock and Soil Mechanics, 2021, 42(12): 3451-3466. (in Chinese)
    [18]
    SONG J H, CHEN K F, LI P, et al. Soil arching in unsaturated soil with different water table[J]. Granular Matter, 2018, 20(4): 78. doi: 10.1007/s10035-018-0849-3
    [19]
    蔺港, 孔令刚, 詹良通, 等. 基于太沙基土拱效应考虑基质吸力影响的松动土压力计算模型[J]. 岩土力学, 2015, 36(7): 2095-2104.

    LIN Gang, KONG Linggang, ZHAN Liangtong, et al. An analytical model for loosening earth pressure considering matric suction based on Terzaghi soil arch effect[J]. Rock and Soil Mechanics, 2015, 36(7): 2095-2104. (in Chinese)
    [20]
    崔蓬勃, 朱永全, 刘勇, 等. 考虑土拱发挥过程的非饱和砂土盾构隧道极限支护力计算方法研究[J]. 岩土工程学报, 2020, 42(5): 873-881. doi: 10.11779/CJGE202005009

    CUI Pengbo, ZHU Yongquan, LIU Yong, et al. Calculation of ultimate supporting forces of shield tunnels in unsaturated sandy soils considering soil arching effects[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 873-881. (in Chinese) doi: 10.11779/CJGE202005009
    [21]
    BISHOP A W. Factors controlling the shear strength of partly saturated soils[J]. ASCE Res Conf Shear Strength of Cohesive Soils, 1960.
    [22]
    FREDLUND D G, MORGENSTERN N R, WIDGER R A. The shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 1978, 15(3): 313-321. doi: 10.1139/t78-029
    [23]
    陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406.

    CHEN Ruoxi, ZHU Bin, CHEN Yunmin, et al. Modified Terzaghi loozening earth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese)
    [24]
    崔蓬勃. 低含水率砂层盾构隧道施工土拱效应研究[D]. 石家庄: 石家庄铁道大学, 2022.

    CUI Pengbo. Research on Soil Arching Effect of Shield Tunneling Construction in Low Moisture Content Sand Layer[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2022. (in Chinese)
    [25]
    JANELID I, KVAPIL R. Sublevel caving[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1966, 3(2): 129-132.
    [26]
    ZHANG H F, ZHANG P, ZHOU W, et al. A new model to predict soil pressure acting on deep burial jacked pipes[J]. Tunnelling and Underground Space Technology, 2016, 60: 183-196.
    [27]
    ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478.
    [28]
    BOLZON G, SCHREFLER B A, ZIENKIEWICZ O C. Elastoplastic soil constitutive laws generalized to partially saturated states[J]. Géotechnique, 1996, 46(2): 279-289.
    [29]
    BORJA R I. On the mechanical energy and effective stress in saturated and unsaturated porous continua[J]. International Journal of Solids and Structures, 2006, 43(6): 1764-1786.
    [30]
    TARANTINO A. A possible critical state framework for unsaturated compacted soils[J]. Géotechnique, 2007, 57(4): 385-389.

Catalog

    Article views (235) PDF downloads (74) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return