• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LAI Feng-wen, LIU Song-yu, YANG Da-yu, CHENG Yue-hong, FAN Qin-jian. Generalized solution to active earth pressure exerted onto retaining wall with narrow backfills[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 483-491. DOI: 10.11779/CJGE202203010
Citation: LAI Feng-wen, LIU Song-yu, YANG Da-yu, CHENG Yue-hong, FAN Qin-jian. Generalized solution to active earth pressure exerted onto retaining wall with narrow backfills[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 483-491. DOI: 10.11779/CJGE202203010

Generalized solution to active earth pressure exerted onto retaining wall with narrow backfills

More Information
  • Received Date: May 07, 2021
  • Available Online: September 22, 2022
  • The finite element limit analysis (FELA) method is used to interpret the active failure mechanisms of retaining wall with narrow backfills under translation mode. It is found from the numerical results that multiple slip surfaces will be developed in the narrow backfills in rebounding form. Moreover, the numbers of slip surfaces in various cases are summarized. Afterwards, based on the active failure mechanisms, the backfills are divided into the upper non-sliding zone and the lower sliding zone. Considering the soil arching effects and the horizontal shearing between adjacent elements, the concept of curved soil-layer element is introduced to calculate the earth pressures in non-sliding zone. The sliding-wedge method and the finite difference theory are further used to estimate the active earth pressure taking the number of slip surface into account. Also, the solution to the active thrust and its application point are deduced. The proposed analytical solutions are validated through the comparisons against the previous studies. Finally, the parametric studies considering the effects of aspect ratio, soil friction angle and wall-soil friction angle are performed. The results show that the number of slip surface significantly affects the distribution of the active earth pressure, and using the proposed analytical solution is beneficial to an economic design of retaining wall with narrow backfills.
  • [1]
    建筑基坑支护技术规程: DB11/ 489—2016[S]. 2016.

    Earthquake Standard of the People's Republic of China: DB11/ 489—2016[S]. 2016. (in Chinese)
    [2]
    徐日庆, 徐叶斌, 程康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J]. 岩土工程学报, 2020, 42(2): 362–371. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002025.htm

    XU Ri-qing, XU Ye-bin, CHENG Kang, et al. A method to calculate the active earth pressure with considering soil arching effect under the nonlimit state of clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 362–371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202002025.htm
    [3]
    FRYDMAN S, KEISSAR I. Earth pressure on retaining walls near rock faces[J]. Journal of Geotechnical Engineering, 1987, 113(6): 586–599. doi: 10.1061/(ASCE)0733-9410(1987)113:6(586)
    [4]
    TAKE W, VALSANGKAR A. Earth pressures on unyielding retaining walls of narrow backfill width[J]. Canadian Geotechnical Journal, 2001, 38(6): 1220–1230. doi: 10.1139/t01-063
    [5]
    O'NEAL T S, HAGERTY D. Earth pressures in confined cohesionless backfill against tall rigid walls—a case history[J]. Canadian Geotechnical Journal, 2011, 48(8): 1188–1197. doi: 10.1139/t11-033
    [6]
    FAN C C, FANG Y S. Numerical solution of active earth pressures on rigid retaining walls built near rock faces[J]. Computers and Geotechnics, 2010, 37(7/8): 1023–1029.
    [7]
    RUI R, YE Y Q, HAN J, et al. Experimental and theoretical investigations on active earth pressure distributions behind rigid retaining walls with narrow backfill under a translational mode[J]. International Journal of Geomechanics, 2020, 20(10): 04020178. doi: 10.1061/(ASCE)GM.1943-5622.0001832
    [8]
    CHEN F, LIN Y, LI D. Solution to active earth pressure of narrow cohesionless backfill against rigid retaining walls under translation mode[J]. Soils and Foundations, 2019, 59(1): 151–161.
    [9]
    GRECO V. Active thrust on retaining walls of narrow backfill width[J]. Computers and Geotechnics, 2013, 50: 66–78. doi: 10.1016/j.compgeo.2012.12.007
    [10]
    CHEN J J, LI M G, WANG J H. Active earth pressure against rigid retaining walls subjected to confined cohesionless soil[J]. International Journal of Geomechanics, 2017, 17(6): 06016041. doi: 10.1061/(ASCE)GM.1943-5622.0000855
    [11]
    赖丰文, 陈福全, 万梁龙. 考虑不完全土拱效应的浅层地基竖向应力计算[J]. 岩土力学, 2018, 39(7): 2546–2554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807027.htm

    LAI Feng-wen, CHEN Fu-quan, WAN Liang-long. Vertical stresses of shallow foundations based on partially developed soil arching effect[J]. Rock and Soil Mechanics, 2018, 39(7): 2546–2554. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807027.htm
    [12]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302–318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)
    [13]
    GOEL S, PATRA N. Effect of arching on active earth pressure for rigid retaining walls considering translation mode[J]. International Journal of Geomechanics, 2008, 8(2): 123–133.
    [14]
    CAO W, LIU T, XU Z. Calculation of passive earth pressure using the simplified principal stress trajectory method on rigid retaining walls[J]. Computers and Geotechnics, 2019, 109: 108–116.
    [15]
    KRABBENHOFT K, LYAMIN A, KRABBENHOFT J. Optum Computational Engineering (Optum G2) [CP]. Available on: www. optumce. com, 2019.
    [16]
    LAI F, CHEN S, XUE J, et al. New analytical solutions for shallow cohesive soils overlying trench voids under various slip surfaces[J]. Transportation Geotechnics, 2020, 25: 100411.
    [17]
    CHEN F Q, MIAO G J, LAI F W. Base instability triggered by hydraulic uplift of pit-in-pit braced excavations in soft clay overlying a confined aquifer[J]. KSCE Journal of Civil Engineering, 2020, 24(6): 1717–1730.
    [18]
    PAIK K H, SALGADO R. Estimation of active earth pressure against rigid retaining walls considering arching effects[J]. Géotechnique, 2003, 53(7): 643–653.
    [19]
    高印立. 有限土体土压力的计算探讨[J]. 建筑科学, 2000, 16(5): 53–56. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200005013.htm

    GAO Yin-li. The Calculation of finite earth pressure[J]. Buliding Science, 2000, 16(5): 53–56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZKX200005013.htm
  • Cited by

    Periodical cited type(9)

    1. 杨光. 波浪补偿钻探设备在海洋岩土工程勘察中的应用. 价值工程. 2024(12): 111-113 .
    2. 杨文保,朱恩赐,吴琪,陈国兴,卢艺静,蒋家卫. 基于BP神经网络的原状土阻尼比智能预测法. 哈尔滨工程大学学报. 2024(08): 1527-1533 .
    3. 郭婷婷,刘建民,杨宏智. 土动剪切模量比的不确定性对莱州湾近海海域深软场地地震动参数的影响. 地球物理学进展. 2023(04): 1765-1774 .
    4. 陈国兴,韩勇,梁珂. 徐州城区黏性土与粉土的动剪切模量与阻尼比特性. 岩土力学. 2023(S1): 163-172 .
    5. 宋丙辉,孙永福,宋玉鹏,周其坤,刘振纹,王琮,杜星. 辽东湾近海海底土小应变动力特性试验研究. 地震工程学报. 2022(03): 535-541 .
    6. 蔡玮良. 江苏大丰海域海洋黏性土动力特性试验研究. 地基处理. 2022(04): 303-308 .
    7. 王艳芳,顾伟杰,姜彦彬. 土体动剪切模量及其衰减特性现场试验研究. 世界地震工程. 2022(03): 144-152 .
    8. 周正龙,丁芷萱,刘杰,赵凯,梁珂,鹿庆蕊. 南海海域饱和粉土动剪切模量和阻尼比试验研究. 土木工程学报. 2022(S1): 227-233 .
    9. 李雨润,杨仲辰,张静娟,张峰玮,赵英涛. 重塑湖相软黏土动力特性试验研究. 地震工程与工程振动. 2021(06): 11-18 .

    Other cited types(5)

Catalog

    Article views (233) PDF downloads (379) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return