Horizontal dynamic analysis of a single pile in saturated soft soils under Rayleigh wave action consideringe effects of vertical loads
-
摘要: 桩在竖向荷载和瑞利波共同作用下产生水平振动,竖向荷载会因二阶效应导致水平位移增大。为研究桩在饱和软土地基中的水平动力响应,建立瑞利波作用下单桩动力响应的计算模型。基于Biot理论计算均匀自由场中饱和软土地基的水平动力响应。利用边界条件求得土体阻力封闭解。基于Timoshenko梁理论建立桩基动力微分方程,得到桩的水平位移、弯矩和转角的解析解。通过数值算例验证模型正确性,分析竖向荷载、无量纲频率对桩水平振动的影响。研究发现竖向荷载和桩长对水平振动影响较大。
-
关键词:
- 饱和软土 /
- 柔性约束 /
- 水平振动 /
- 瑞利波 /
- Timoshenko梁
Abstract: The pile generates horizontal vibration under the combined action of vertical loads and Rayleigh waves, and the vertical loads will increase the horizontal displacement due to the second-order effects. In order to study the horizontal dynamic response of piles in saturated soft soil foundation, a model for calculating the dynamic response of a single pile under the action of Rayleigh waves is established. Based on the Biot theory, the horizontal dynamic response of saturated soft soil foundation in a uniform free field is calculated. The boundary conditions are used to obtain the closure solution of soil resistance. Based on the Timoshenko beam theory, the dynamic differential equation for the pile foundation is established, and the analytical solutions of the horizontal displacement, bending moment and rotation angle of the pile are obtained. Numerical examples are used to verify the correctness of the model, and the influences of the vertical load and dimensionless frequency on the horizontal vibration of the pile are analyzed. It is found that the vertical load and pile length have a great influence on the horizontal vibration.-
Keywords:
- saturated soft soil /
- flexible constraint /
- horizontal vibration /
- Rayleigh wave /
- Timoshenko beam
-
-
-
[1] 王磊, 赵成刚. 饱和土沉积谷场地对平面Rayleigh波的散射[J]. 岩土工程学报, 2007, 29(2): 204-211. http://www.cgejournal.com/article/id/12305 WANG Lei, ZHAO Chenggang. Scattering of plane Rayleigh waves in alluvial valleys with saturated soil deposits[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 204-211. (in Chinese) http://www.cgejournal.com/article/id/12305
[2] 肖薄, 刘争平, 黄云, 等. 瑞利面波地形效应的数值模拟研究[J]. 地球物理学进展, 2019, 34(3): 1221-1228. XIAO Bo, LIU Zhengping, HUANG Yun, et al. Study to the topographical effect of Rayleigh surface waves by numerical simulation[J]. Progress in Geophysics, 2019, 34(3): 1221-1228. (in Chinese)
[3] ATHANASOPOULOS G A, PELEKIS P C, ANAGNOSTOPOULOS G A. Effect of soil stiffness in the attenuation of Rayleigh-wave motions from field measurements[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(4): 277-288. doi: 10.1016/S0267-7261(00)00009-9
[4] 夏唐代, 颜可珍, 孙鸣宇. 饱和土层中瑞利波的传播特性[J]. 水利学报, 2004, 35(11): 81-84. XIA Tangdai, YAN Kezhen, SUN Mingyu. Propagation of Rayleigh wave in saturated soil layer[J]. Journal of Hydraulic Engineering, 2004, 35(11): 81-84. (in Chinese)
[5] YANG Z J, WU W B, LIU H, et al. Flexible support of a pile embedded in unsaturated soil under Rayleigh waves[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(1): 226-247.
[6] CAI Y Q, DING G Y, XU C J, et al. Vertical amplitude reduction of Rayleigh waves by a row of piles in a poroelastic half-space[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(16): 1799-1821. doi: 10.1002/nag.789
[7] YANG Z, WU W, LIU H, et al. Flexible support of a pile embedded in unsaturated soil under Rayleigh waves[J]. Earthquake Engineering & Structural Dynamics, 2023, 52(1): 226-247.
[8] ZHANG M, WANG X H, YANG G C, et al. Solution of dynamic Green's function for unsaturated soil under internal excitation[J]. Soil Dynamics and Earthquake Engineering, 2014, 64: 63-84. doi: 10.1016/j.soildyn.2014.05.001
[9] ZHANG M, ZHAO C L, XU C J. Lateral dynamic response of pile group embedded in unsaturated soil[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106559.
[10] MAKRIS N. Soil-pile interaction during the passage of Rayleigh waves: an analytical solution[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(2): 153-167.