Triaxial shear mechanical properties of weak rock coarse granular materials subjected to temperature and relative humidity
-
摘要: 软岩粗粒料具有风化程度高、易破碎等特点,其力学特性易受温湿环境的影响。利用自主研制的温湿控制粗粒料大型三轴仪开展了一系列控制温湿度的软岩粗粒料三轴剪切试验,探究了温湿度对软岩粗粒料剪切强度、剪切变形、颗粒破碎及临界状态的影响规律。研究发现:①软岩粗粒料的力学行为受温湿度影响显著,随着温湿度的升高,其峰值剪切强度降低,剪缩变形量增加,颗粒破碎程度增大,p-q空间内的临界状态线向下旋转,同时e-(p/pa)ξ空间内的临界状态线向下平移;②温湿度对力学特性的影响在低围压条件下更显著,随着围压的升高,温湿度引起的差异性变小。③基于不同温湿度作用下的颗粒破碎等效对应关系,实现了不同温湿工况下颗粒破碎及临界状态试验规律的归一化,为建立统一考虑温湿度影响的本构模型提供思路。Abstract: The weak rock coarse granular materials have the characteristics of high weathering degree and low crushing strength, and their mechanical properties are easily affected by the temperature and humidity environment. A series of triaxial shear tests on the weak rock coarse granular materials are carried out by controlling the temperature and relative humidity. Based on the test results, the influences of the temperature and relative humidity on the shear strength, shear deformation, particle breakage and critical state are analyzed. The results show that the mechanical behavior of the weak rock coarse granular materials is greatly affected by the temperature and relative humidity. With the increase of the temperature and relative humidity, the peak strength decreases, the shear shrinkage deformation increases, and the particle breakage degree increases. The increase of the temperature and relative humidity causes the critical state line to rotate downward in the p-q plane and to drift downward in the e-(p/pa)ξ plane. The influences of the temperature and relative humidity on the mechanical properties of the weak rock coarse granular materials are more significant under low confining pressures, and the differences of the test results are less significant with the increase of the confining pressure. Based on the equivalent corresponding relationships of particle breakage under different temperature and relative humidity conditions, the discrete test results of the particle breakage and critical state are transformed into the normalized results. The research results can be used to establish the constitutive model considering the influences of the temperature and relative humidity.
-
-
表 1 饱和盐溶液及对应相对湿度环境(T=30℃)
Table 1 Saturated salt solutions and corresponding relative humidities (T=30℃)
饱和盐溶液 RH/% LiBr 6.16±0.47 MgCl2·H2O 32.44±0.14 NaBr 56.03±0.38 NaCl 75.09±0.11 KCl 83.62±0.25 K2SO4 97.08±0.41 表 2 临界状态强度公式的参数统计
Table 2 Fitting parameters of critical state strength
拟合参数 温湿状态 55℃
饱和30℃
饱和5℃
饱和30℃
RH=75%30℃
RH=33%A 2.492 2.774 3.591 4.026 4.484 B 0.949 0.938 0.907 0.897 0.886 表 3 临界状态孔隙比公式的参数统计
Table 3 Fitting parameters of critical state void ratio
拟合
参数温湿状态 55℃
饱和30℃
饱和5℃
饱和30℃
RH=75%30℃
RH=33%eref 0.391 0.407 0.420 0.451 0.459 表 4 Br与Wp拟合公式的参数统计
Table 4 Fitting parameters of relationship between Br and Wp
拟合参数 温湿状态 55℃
饱和30℃
饱和5℃
饱和30℃
RH=75%30℃
RH=33%χ 2285.8 2670.2 2919.8 3710.3 4366.9 表 5 不同温湿工况下的归一化参变量α统计
Table 5 Normalized parameters α under different temperatures and relative humidities
修正参数 温湿状态 55℃
饱和30℃
饱和5℃
饱和30℃
RH=75%30℃
RH=33%α 12484.99 15090.79 16828.30 22536.94 27493.86 -
[1] 柏树田, 周晓光, 晁华怡. 软岩堆石料的物理力学性质[J]. 水力发电学报, 2002, 21(4): 34-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200204005.htm BAI Shutian, ZHOU Xiaoguang, CHAO Huayi. Physico-mechanical properties of soft rock materials[J]. Journal of Hydroelectric Engineering, 2002, 21(4): 34-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200204005.htm
[2] 陈沅江, 潘长良, 曹平, 等. 软岩流变的一种新力学模型[J]. 岩土力学, 2003, 24(2): 209-214. doi: 10.3969/j.issn.1000-7598.2003.02.012 CHEN Yuanjiang, PAN Changliang, CAO Ping, et al. A new mechanical model for soft rock rheology[J]. Rock and Soil Mechanics, 2003, 24(2): 209-214. (in Chinese) doi: 10.3969/j.issn.1000-7598.2003.02.012
[3] 张丹, 李广信, 张其光. 软岩粗粒土增湿变形特性研究[J]. 水力发电学报, 2009, 28(2): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200902009.htm ZHANG Dan, LI Guangxin, ZHANG Qiguang. Research on moistening test of coarse-grained soil with weak rock[J]. Journal of Hydroelectric Engineering, 2009, 28(2): 52-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB200902009.htm
[4] 杨骐莱, 熊勇林, 张升, 等. 考虑温度影响的软岩弹塑性本构模型[J]. 岩土力学, 2019, 40(5): 1898-1906. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905032.htm YANG Qilai, XIONG Yonglin, ZHANG Sheng, et al. Elastoplastic constitutive model for soft rock considering temperature effect[J]. Rock and Soil Mechanics, 2019, 40(5): 1898-1906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905032.htm
[5] 巢志明, 王环玲, 徐卫亚, 等. 不同饱和度砂岩渗透率、孔隙度随应力变化规律研究[J]. 岩石力学与工程学报, 2017, 36(3): 665-680. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703016.htm CHAO Zhiming, WANG Huanling, XU Weiya, et al. Variation of permeability and porosity of sandstones with different degrees of saturation under stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 665-680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201703016.htm
[6] 石北啸, 蔡正银, 陈生水. 温度变化对堆石料变形影响的试验研究[J]. 岩土工程学报, 2016, 38(增刊2): 299-305. doi: 10.11779/CJGE2016S2049 SHI Beixiao, CAI Zhengyin, CHEN Shengshui. Experiments on influence of temperature on deformation of rock fills[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2): 299-305. (in Chinese) doi: 10.11779/CJGE2016S2049
[7] 孔宪京, 宁凡伟, 刘京茂, 等. 应力路径和干湿状态对堆石料颗粒破碎的影响研究[J]. 岩土力学, 2019, 40(6): 2059-2065. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906005.htm KONG Xianjing, NING Fanwei, LIU Jingmao, et al. Influences of stress paths and saturation on particle breakage of rockfill materials[J]. Rock and Soil Mechanics, 2019, 40(6): 2059-2065. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906005.htm
[8] 张清振, 袁会娜, 张其光, 等. 堆石料干湿循环变形特性试验研究[J]. 水力发电学报, 2015, 34(12): 33-41. doi: 10.11660/slfdxb.20151204 ZHANG Qingzhen, YUAN Huina, ZHANG Qiguang, et al. Experimental study on deformation characteristics of rock-fill material under cyclic drying-wetting[J]. Journal of Hydroelectric Engineering, 2015, 34(12): 33-41. (in Chinese) doi: 10.11660/slfdxb.20151204
[9] 孙国亮, 孙逊, 张丙印. 堆石料风化试验仪的研制及应用[J]. 岩土工程学报, 2009, 31(9): 1462-1466. doi: 10.3321/j.issn:1000-4548.2009.09.023 SUN Guoliang, SUN Xun, ZHANG Bingyin. Development and application of weathering test apparatus for rockfill[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1462-1466. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.023
[10] OLDECOP L A, ALONSO E E. A model for rockfill compressibility[J]. Géotechnique, 2001, 51(2): 127-139. doi: 10.1680/geot.2001.51.2.127
[11] OLDECOP L A, ALONSO E E. Theoretical investigation of the time-dependent behaviour of rockfill[J]. Géotechnique, 2007, 57(3): 289-301. doi: 10.1680/geot.2007.57.3.289
[12] ALONSO E E, ROMERO E E, ORTEGA E. Yielding of rockfill in relative humidity-controlled triaxial experiments[J]. Acta Geotechnica, 2016, 11(3): 455-477. doi: 10.1007/s11440-016-0437-9
[13] 毛航宇, 刘斯宏, 沈超敏, 等. 温、湿控制粗粒料大型三轴仪的研制及应用[J]. 岩石力学与工程学报, 2021, 40(6): 1258-1266. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106016.htm MAO Hangyu, LIU Sihong, SHEN Chaomin, et al. Development and application of a temperature-humidity controlled large triaxial apparatus for coarse granular materials[J]. Rock and Soil Mechanics, 2021, 40(6): 1258-1266. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106016.htm
[14] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
[15] 孙德安, 何家浩, 高游. 广吸力范围内压实红黏土的强度特性[J]. 岩土力学, 2017, 38(增刊2): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2007.htm SUN Dean, HE Jiahao, GAO You. Strength characteristics of compacted lateritic clay in a wide range of suction[J]. Rock and Soil Mechanics, 2017, 38(S2): 51-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S2007.htm
[16] 刘恩龙, 覃燕林, 陈生水, 等. 堆石料的临界状态探讨[J]. 水利学报, 43(5): 505-511, 519. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201205004.htm LIU Enlong, TAN Yanlin, CHEN Shengshui, et al. Investigation on critical state of rockfill materials[J]. Journal of Hydraulic Engineering, 2012, 43(5): 505-511, 519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201205004.htm
[17] 蔡正银, 李小梅, 韩林, 等. 考虑级配和颗粒破碎影响的堆石料临界状态研究[J]. 岩土工程学报, 2016, 38(8): 1357-1364. doi: 10.11779/CJGE201608001 CAI Zhengyin, LI Xiaomei, HAN Lin, et al. Critical state of rockfill materials considering particle gradation and breakage[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1357-1364. (in Chinese) doi: 10.11779/CJGE201608001
[18] ZHANG Y, BUSCARNERA G. Breakage mechanics for granular materials in surface-reactive environments[J]. Journal of the Mechanics and Physics of Solids, 2018, 112: 89-108.
[19] 贾海梁, 王婷, 项伟, 等. 含水率对泥质粉砂岩物理力学性质影响的规律与机制[J]. 岩石力学与工程学报, 2018, 37(7): 1618-1628. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807006.htm JIA Hailiang, WANG Ting, XIANG Wei, et al. Influence of water content on the physical and mechanical behaviour of argillaceous siltstone and some microscopic explanations[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1618-1628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807006.htm
[20] EINAV I. Breakage mechanics—part I: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274-1297.
[21] EINAV I. Breakage mechanics—Part II: Modelling granular materials[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1298-1320.
[22] FROSSARD E, HU W, DANO C, et al. Rockfill shear strength evaluation: a rational method based on size effects[J]. Géotechnique, 2012, 62(5): 415-427.
[23] SHEN C, LIU S, YU J, et al. Simple scale effect model for the volumetric behavior of rockfill materials[J]. International Journal of Geomechanics, 2021, 21(3): 04020266.