Processing math: 100%
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于动态图像技术的南海钙质土颗粒形态特征研究

刘鑫, 李飒, 尹福顺, 姚婷

刘鑫, 李飒, 尹福顺, 姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究[J]. 岩土工程学报, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010
引用本文: 刘鑫, 李飒, 尹福顺, 姚婷. 基于动态图像技术的南海钙质土颗粒形态特征研究[J]. 岩土工程学报, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010
LIU Xin, LI Sa, YIN Fushun, YAO Ting. Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010
Citation: LIU Xin, LI Sa, YIN Fushun, YAO Ting. Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 590-598. DOI: 10.11779/CJGE20220010

基于动态图像技术的南海钙质土颗粒形态特征研究  English Version

基金项目: 

国家自然科学基金面上项目 42072294

国家自然科学基金重大项目 51890911

天津市研究生科研创新项目 2021YJSB183

详细信息
    作者简介:

    刘鑫(1995—),男,博士研究生,主要从事钙质土力学特性方面的研究。E-mail: 1085568118@qq.com

    通讯作者:

    李飒, E-mail: lisa@tju.edu.cn

  • 中图分类号: TU411

Morphological characteristics of carbonate soil in South China Sea based on dynamic image technology

  • 摘要: 颗粒形态是一项重要的细观指标,影响着粒状土的物理力学性质。钙质土因为其特殊的生物成因,有着复杂的颗粒形态。为了研究其颗粒形态特征,采用PartAn 3D颗粒动态图像分析仪对粒径0.5~20 mm的南海钙质土颗粒开展形状测试,采用延伸率、扁平度、球形度、圆度、棱角度和凸度指标定量描述颗粒形态特征。结果显示:南海钙质土颗粒的延伸率、扁平度、球形度和圆度符合正态分布,而棱角度和凸度符合幂律分布;颗粒形状以块状居多,随着粒径的减小,钙质土颗粒变得更扁平,形状更规则;通过研究样本数量对颗粒形状量化结果的影响,建议采用形状指标的算术平均值量化单一粒组钙质土颗粒形状特征时,颗粒数目不少于600。最后,运用统计学中的主成分分析方法,得到一个综合考虑钙质土颗粒形状信息的新指标,建立了该指标与钙质土最大、最小孔隙比的关系。
    Abstract: The particle morphology is an important microscopic characteristic that affects the physical and mechanical properties of granular soils. Carbonate soil particles have complex morphology due to special biogenesis. In order to study the morphological characteristics of the soil particles, the PartAn 3D particle dynamic image analyzer was used to test the particle shape of the carbonate soil with grain sizes of 0.5 ~ 20 mm from the South China Sea. The elongation, flatness, sphericity, roundness, angularity and convexity were used to quantitatively describe the morphological characteristics of the particles. The results show that the frequency distribution of the elongation, flatness, sphericity and roundness of carbonate soil particles in the South China Sea complies with the normal one, while the frequency distribution of the angularity and convexity complies with that of the power law. The particle shape of the carbonate soil is mostly blocky, and with the decrease of grain size, the soil particles become flatter and more regular in shape. Through investigating the effects of sample size on the results of particle shape quantification, it is suggested that the number of particles should be not less than 600 when using the arithmetic mean of shape descriptors to quantify the morphological characteristics of the uniformly graded carbonate soil. Finally, a comprehensive shape index which can fully describe the morphological characteristics of the carbonate soil particles is obtained with the aid of the principal component analysis method in statistics, and the relationship between this shape index and the maximum to minimum void ratio of the carbonate soil is established.
  • 图  1   PartAn 3D颗粒动态图像分析仪[11]

    Figure  1.   PartAn 3D particle dynamic image analyzer[11]

    图  2   下落过程中颗粒翻滚的一系列图像

    Figure  2.   A series of images of particles tumbling as they fall

    图  3   颗粒形状、棱角和纹理示意图

    Figure  3.   Schematic diagram of particle shape, angularity and texture

    图  4   不同粒组钙质土颗粒各尺寸参数的累积分布曲线

    Figure  4.   Cumulative distribution curves of particle size indices of carbonate soil with different grain fractions

    图  5   不同粒组钙质土颗粒形状指标的频率分布

    Figure  5.   Frequency distribution of particle shape indices of carbonate soil with different grain fractions

    图  6   不同粒组钙质土颗粒形状指标的累积分布曲线

    Figure  6.   Cumulative distribution curves of particle shape indices of carbonate soil with different grain fractions

    图  7   各粒组形状指标统计量与10~20 mm粒组的差异

    Figure  7.   Statistical differences of shape indices for each grain fraction and 10~20 mm-grain fraction

    图  8   1~2 mm颗粒的形状指标特征值的相对误差平均值随样本数量的变化

    Figure  8.   Variation of average relative error of characteristic value of shape indices of 1~2 mm particles with the number of samples

    图  9   主成分分析流程图

    Figure  9.   Flow chart of principal component analysis

    图  10   主成分与极限孔隙比的关系

    Figure  10.   Relationship between principal component and limit void ratio

    表  1   本文选用的表征颗粒形状特征的指标

    Table  1   Indices chosen to characterize particle shape in this paper

    指标 定义 取值范围 描述特征
    延伸率 FW/FWFLFL 0~1 宏观形状。颗粒越狭长,其值越小
    扁平度 FT/FTFWFW 0~1 宏观形状。颗粒越扁平,其值越小
    球形度 (Da/Dp)2 0~1 宏观形状、中观棱角。颗粒越接近球形,其值越大
    圆度 4A/(π F2L) 0~1 宏观形状、中观棱角。颗粒越接近圆形,其值越大
    棱角度 A/AC 0~1 中观棱角。颗粒棱角越多,越突出,其值越小
    凸度 PC/P 0~1 细观纹理。颗粒表面越光滑,其值越大
    注:Da为与颗粒投影图像等面积圆的直径;Dp为与颗粒投影图像等周长圆的直径;FLFWFT分别为Feret长度、宽度和厚度;A为颗粒投影图像面积;P为颗粒投影图像周长;AC为颗粒投影图像外接最小凸边形面积;PC为颗粒投影图像外接最小凸边形周长。在本次试验中,DaDpAPACPC取一系列图像的平均值;FL取一系列图像中的最大长度,FW取一系列图像中的最大宽度,FT取一系列图像中的最小宽度。
    下载: 导出CSV

    表  2   不同粒组钙质土颗粒形状指标统计表

    Table  2   Statistical list of particle shape indices of carbonate soil with different grain fractions

    粒组 统计量 延伸率 扁平度 球形度 圆度 棱角度 凸度
    10~20 mm 平均值 0.667 0.689 0.794 0.471 0.954 0.979
    中位数 0.681 0.703 0.806 0.475 0.961 0.984
    最小值 0.219 0.162 0.389 0.144 0.730 0.814
    最大值 0.947 0.990 0.961 0.854 0.998 0.998
    标准差 0.125 0.159 0.081 0.112 0.031 0.017
    5~10 mm 平均值 0.670 0.668 0.808 0.471 0.961 0.985
    中位数 0.683 0.673 0.818 0.473 0.966 0.988
    最小值 0.233 0.162 0.254 0.070 0.543 0.802
    最大值 0.945 0.988 0.978 0.857 0.997 0.999
    标准差 0.123 0.149 0.071 0.104 0.026 0.012
    2~5 mm 平均值 0.685 0.629 0.806 0.460 0.960 0.990
    中位数 0.699 0.649 0.818 0.461 0.967 0.993
    最小值 0.096 0.105 0.153 0.047 0.599 0.874
    最大值 0.963 0.967 0.979 0.826 0.999 1.000
    标准差 0.120 0.175 0.081 0.111 0.030 0.009
    1~2 mm 平均值 0.686 0.635 0.834 0.461 0.972 0.995
    中位数 0.698 0.649 0.848 0.465 0.980 0.997
    最小值 0.109 0.235 0.300 0.051 0.667 0.893
    最大值 0.963 0.956 0.980 0.827 1.000 1.000
    标准差 0.114 0.147 0.075 0.113 0.026 0.006
    0.5~1 mm 平均值 0.684 0.605 0.850 0.424 0.987 0.998
    中位数 0.692 0.607 0.859 0.432 0.992 0.999
    最小值 0.153 0.202 0.283 0.055 0.693 0.945
    最大值 0.934 1.000 1.000 0.744 1.000 1.000
    标准差 0.115 0.118 0.059 0.098 0.018 0.003
    下载: 导出CSV

    表  3   量化钙质土颗粒形状特征所需的最小样本数量

    Table  3   Minimum number of samples required to quantify shape characteristics of carbonate soil particles

    粒组 延伸率 扁平度 球形度 圆度 棱角度 凸度
    10~20 mm 345 446 238 344 14 10
    5~10 mm 326 583 135 292 12 10
    2~5 mm 270 439 121 224 32 10
    1~2 mm 111 473 68 136 17 10
    0.5~1 mm 318 241 77 242 10 10
    下载: 导出CSV

    表  4   不同粒组钙质土的极限孔隙比

    Table  4   Limit void ratios of carbonate soil with different fractions

    孔隙比 10~20
    mm
    5~10
    mm
    2~5
    mm
    1~2
    mm
    0.5~1
    mm
    emax 2.225 1.821 1.703 1.576 1.456
    emin 1.586 1.241 1.143 1.138 1.112
    注:emax为最大孔隙比;emin为最小孔隙比。
    下载: 导出CSV

    表  5   现有预测极限孔隙比的经验公式

    Table  5   Existing empirical equations for predicting limit void ratio

    文献 经验公式
    Santamarina等[3] emax=0.554+0.154R1emin=0.359+0.082R1
    Cho等[5] emax=1.50.41(R+S)emin=0.90.22(R+S)
    Patra等[22] emax=0.6042D500.304emin=0.3346D500.491
    Zheng等[23] emax=R0.20S0.25Cu0.10emaxemin=R0.15S0.25Cu0.50emin
    Hryciw等[24] emax=0.50R0.2+0.41S0.6+0.34Cu0.20.51emin=0.37R0.2+0.28S0.6+0.31Cu0.30.48
    Chang等[25] emax=0.619R0.372(D50/Dref)0.048emin=0.413R0.291(D50/Dref)0.043
    注:emax为参考最大孔隙比,等于0.75;emax为参考最小孔隙比,等于0.50;Dref为参考粒径,等于1 mm。
    下载: 导出CSV

    表  6   方差贡献率表

    Table  6   Variance contribution rates

    成分 特征值 方差贡献率/% 累积方差贡献率/%
    1 3.698 92.455 92.455
    2 0.238 5.942 98.397
    3 0.060 1.488 99.886
    4 0.005 0.114 100.000
    下载: 导出CSV
  • [1] 刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究[J]. 岩土工程学报, 2019, 41(9): 1773-1780. doi: 10.11779/CJGE201909024

    LIU Xin, LI Sa, LIU Xiaolong, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1773-1780. (in Chinese) doi: 10.11779/CJGE201909024

    [2]

    SHINOHARA K, OIDA M, GOLMAN B. Effect of particle shape on angle of internal friction by triaxial compression test[J]. Powder Technology, 2000, 107(1/2): 131-136.

    [3]

    SANTAMARINA J C, CHO G C. Soil behaviour: the role of particle shape[C]//Advances in Geotechnical Engineering: The Skempton Conference. London, U K: Thomas Telford Publishing, 2004: 604-617.

    [4]

    ROUSÉ P C, FANNIN R J, SHUTTLE D A. Influence of roundness on the void ratio and strength of uniform sand[J]. Géotechnique, 2008, 58(3): 227-231. doi: 10.1680/geot.2008.58.3.227

    [5]

    CHO G C, DODDS J, SANTAMARINA J C. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)

    [6]

    SARKAR D, GOUDARZY M, KÖNIG D. An interpretation of the influence of particle shape on the mechanical behavior of granular material[J]. Granular Matter, 2019, 21(3): 1-24.

    [7] 陈海洋, 汪稔, 李建国, 等. 钙质砂颗粒的形状分析[J]. 岩土力学, 2005, 26(9): 1389-1392. doi: 10.3969/j.issn.1000-7598.2005.09.008

    CHEN Haiyang, WANG Ren, LI Jianguo, et al. Grain shape analysis of calcareous soil[J]. Rock and Soil Mechanics, 2005, 26(9): 1389-1392. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.09.008

    [8] 王步雪岩, 孟庆山, 韦昌富, 等. 多投影面下珊瑚砂砾颗粒形貌量化试验研究[J]. 岩土力学, 2019, 40(10): 3871-3878. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910021.htm

    WANG Buxueyan, MENG Qingshan, WEI Changfu, et al. Quantitative experimental study of the morphology of coral sand and gravel particles under multiple projection surfaces[J]. Rock and Soil Mechanics, 2019, 40(10): 3871-3878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910021.htm

    [9]

    WANG X, WU Y, CUI J, et al. Shape characteristics of coral sand from the South China Sea[J]. Journal of Marine Science and Engineering, 2020, 8(10): 1-24. http://www.xueshufan.com/publication/3092935897

    [10]

    LI L Z, BEEMER R D, ISKANDER M. Granulometry of two marine calcareous sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020171. doi: 10.1061/(ASCE)GT.1943-5606.0002431

    [11]

    WEI H Z, ZHAO T, MENG Q S, et al. Quantifying the morphology of calcareous sands by dynamic image analysis[J]. International Journal of Geomechanics, 2020, 20(4): 04020020. doi: 10.1061/(ASCE)GM.1943-5622.0001640

    [12] 孙越, 肖杨, 周伟, 等. 钙质砂和石英砂压缩下的颗粒破碎与形状演化[J]. 岩土工程学报, 2022, 44(6): 1061-1068. doi: 10.11779/CJGE202206010

    SUN Yue, XIAO Yang, ZHOU Wei, et al. Particle breakage and shape evolution of calcareous and quartz sands under compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1061-1068. (in Chinese) doi: 10.11779/CJGE202206010

    [13] 马成昊, 朱长歧, 刘海峰, 等. 土的颗粒形貌研究现状及展望[J]. 岩土力学, 2021, 42(8): 2041-2058. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm

    MA Chenghao, ZHU Changqi, LIU Haifeng, et al. State-of-the-art review of research on the particle shape of soil[J]. Rock and Soil Mechanics, 2021, 42(8): 2041-2058. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202108001.htm

    [14]

    LI L Z, ISKANDER M. Comparison of 2D and 3D dynamic image analysis for characterization of natural sands[J]. Engineering Geology, 2021, 290: 106052.

    [15]

    GUO Y L, MARKINE V, ZHANG X H, et al. Image analysis for morphology, rheology and degradation study of railway ballast: a review[J]. Transportation Geotechnics, 2019, 18: 173-211.

    [16]

    Standard Practice for Characterization of Particles: ASTM F1877—05(2010)[S]. West Conshohocken: ASTM International, 2010.

    [17]

    Representation of Results of Particle Size Analysis — Part 6: Descriptive and Quantitative Representation of Particle Shape and Morphology: ISO 9276—6[S]. ISO, 2008.

    [18]

    Standard Practice for Description and Identification of Soils (Visual-Manual Procedures): ASTM D2488—17e1[S]. ASTM International, 2017.

    [19] 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [20]

    CETIN K O, ILGAC M. Probabilistic assessments of void ratio limits and their range for cohesionless soils[J]. Soil Dynamics and Earthquake Engineering, 2021, 142: 106481.

    [21]

    LI L Z, ISKANDER M. Evaluation of roundness parameters in use for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(9): 04021081.

    [22]

    PATRA C, SIVAKUGAN N, DAS B, et al. Correlations for relative density of clean sand with Median grain size and compaction energy[J]. International Journal of Geotechnical Engineering, 2010, 4(2): 195-203.

    [23]

    ZHENG J X, HRYCIW R D. Index void ratios of sands from their intrinsic properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(12): 06016019.

    [24]

    HRYCIW R D, ZHENG J X, PENN R. An update of Robert M. Koerner's models for the packing densities of sands using image-based intrinsic soil properties[C]//Geosynthetics, Forging a Path to Bona Fide Engineering Materials. Chicago, Illinois. Reston, VA: American Society of Civil Engineers, 2016: 83-94.

    [25]

    CHANG C S, DENG Y B, MEIDANI M. A multi-variable equation for relationship between limiting void ratios of uniform sands and morphological characteristics of their particles[J]. Engineering Geology, 2018, 237: 21-31.

  • 其他相关附件

图(10)  /  表(6)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-02
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回