• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于CFD-DEM流固耦合方法的吸力锚基础负压沉贯数值模拟

王胤, 杨涵, 庞子毅, 陶奕辰

王胤, 杨涵, 庞子毅, 陶奕辰. 基于CFD-DEM流固耦合方法的吸力锚基础负压沉贯数值模拟[J]. 岩土工程学报, 2023, 45(2): 384-393. DOI: 10.11779/CJGE20211512
引用本文: 王胤, 杨涵, 庞子毅, 陶奕辰. 基于CFD-DEM流固耦合方法的吸力锚基础负压沉贯数值模拟[J]. 岩土工程学报, 2023, 45(2): 384-393. DOI: 10.11779/CJGE20211512
WANG Yin, YANG Han, PANG Ziyi, TAO Yichen. Numerical simulation of negative pressure penetration of suction anchor foundation based on CFD-DEM fluid solid coupling method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 384-393. DOI: 10.11779/CJGE20211512
Citation: WANG Yin, YANG Han, PANG Ziyi, TAO Yichen. Numerical simulation of negative pressure penetration of suction anchor foundation based on CFD-DEM fluid solid coupling method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 384-393. DOI: 10.11779/CJGE20211512

基于CFD-DEM流固耦合方法的吸力锚基础负压沉贯数值模拟  English Version

基金项目: 

国家自然科学基金项目 51879035

国家自然科学基金项目 51890912

中央高校基本科研业务费项目 DUT20JC33

辽宁省自然科学基金项目 2020-MS-101

详细信息
    作者简介:

    作者简介:王胤(1982—),男,博士,教授,主要从事海洋土力学、海洋结构基础及相关流固耦合数值方法的教学和科研工作。E-mail:y.wang@dlut.edu.cn

  • 中图分类号: TU43

Numerical simulation of negative pressure penetration of suction anchor foundation based on CFD-DEM fluid solid coupling method

  • 摘要: 吸力锚基础作为一种新型高效的海洋结构物基础形式在海洋工程中得到了广泛应用。对于砂土中的吸力锚沉贯研究,传统试验或有限元数值模拟存在一定局限性。采用基于离散单元法与计算流体动力学理论(CFD-DEM)流固耦合方法对吸力锚在砂土中的吸力贯入过程进行数值模拟分析;通过与室内物理模型试验、沉贯阻力理论解析计算结果进行对比分析,验证CFD-DEM流固耦合方法的有效性和准确性。进一步地,从土颗粒细观尺度上深入分析吸力锚在砂土中沉贯特性。数值模拟捕捉到贯入过程中锚内土塞和砂层变化现象,发现砂层呈现出中间向上凸起的弧状分布,说明贯入产生挤土效应,其造成的土体位移和膨胀也是土塞产生的原因。同时模拟得到贯入过程中的超孔隙水压力等势线分布变化情况和锚内砂层水力梯度的变化情况,证实了砂土中吸力贯入的“安全机制”。最后将数值所得的锚外负压比变化与Houlsby和Byrne理论模型计算结果进行对比,得到锚内土体渗透系数随沉贯的变化规律。通过本研究验证,采用离散元法结合计算流体动力学理论有效地模拟和捕捉吸力锚沉贯过程中的细观土水相互作用、宏观土体变形及渗流场分布等现象,该方法可作为吸力锚沉贯特性研究的一种有效手段。
    Abstract: As a new-type and efficient marine structure foundation form, the suction anchor is widely used in ocean engineering. However, the traditional laboratory tests and the finite element numerical simulations have limitations in studying the penetration of suction anchors in granular materials such as sand. The fluid-solid coupling method based on the discrete element method and computational fluid dynamics theory (CFD-DEM) is used to numerically simulate the penetration of the suction anchors in sand. The effectiveness and accuracy of the CFD-DEM fluid-solid coupling method are verified by comparing with these of the laboratory suction penetration tests and the theoretical analysis of penetration resistance. The penetration mechanism of the suction anchors in sand is explained from the mesoscopic scale of soil particles. The changes of soil plug and sand layer inside the anchor during the penetration process are obtained, which shows that the sand layer presents a convex arc distribution in the middle, indicating the compaction effects. The soil displacement and expansion caused by the compaction effects are also part of the reasons for the soil heave. Simultaneously, the equipotential distribution of the excess pore water pressure changes and the changes in the hydraulic gradient of the sand layer during the penetration process are simulated, which confirms the "safety mechanism" of suction penetration in the sand. Finally, the change of negative pressure loss ratio is compared with the results of Houlsby and Byrne's theoretical model, and the variation law of permeability coefficient of soil inside the anchor with penetration is obtained. In this study, it is proved that the CFD-DEM is an efficient method to analyze the suction installation of the suction anchors in sand.
  • 图  1   CFD-DEM耦合计算流程

    Figure  1.   Flow chart of CFD-DEM coupling method

    图  2   砂土颗粒级配曲线

    Figure  2.   Grain-size distribution curves of sand

    图  3   吸力锚贯入数值模型及边界条件

    Figure  3.   CFD-DEM model for penetration of suction anchor and boundary conditions

    图  4   锚体顶部负压吸力值

    Figure  4.   Suction values of negative pressure at top of cylinder

    图  5   负压吸力与沉贯阻力值

    Figure  5.   Negative pressure suctions and penetration resistances

    图  6   土塞隆起高度随负压沉贯深度的变化曲线

    Figure  6.   Variation of height of soil plug with penetration depth ratio

    图  7   不同贯入深度处土层变化情况

    Figure  7.   Variation of soil layers at different penetration depths

    图  8   土层中细粒向上运移产生错层现象

    Figure  8.   Upward migration of fine particles in soil layer and phenomenon of cross-bedding

    图  9   不同贯入深度时的压力等势线分布图

    Figure  9.   Distribution of pressure isopotential lines at different penetration depths

    图  10   顶面流量Q及锚底向内水平流速ub随贯入深度变化

    Figure  10.   Variation of flowrate at outlet and horizontal fluid velocity at bottom of bucket during penetration

    图  11   锚体内砂层水力梯度i随贯入深度变化

    Figure  11.   Variation of hydraulic gradient of soil layers inside suction bucket during penetration

    图  12   锚外负压比随沉贯深度变化曲线

    Figure  12.   Variation of negative pressure loss ratio outside bucket during penetration

    表  1   模型试验中吸力锚模型尺寸参数

    Table  1   Dimensions of model suction anchor

    锚长度H/
    mm
    内径Di/
    mm
    外径Do/
    mm
    壁厚t/
    mm
    长径比
    150 150 158 4 1
    下载: 导出CSV
  • [1] 鲁晓兵, 郑哲敏, 张金来. 海洋平台吸力式基础的研究与进展[J]. 力学进展, 2003, 33(1): 27-40. doi: 10.3321/j.issn:1000-0992.2003.01.005

    LU Xiaobing, ZHENG Zhemin, ZHANG Jinlai. Progress in the study on the bucket foundations of offshore platform[J]. Advances in Mechanics, 2003, 33(1): 27-40. (in Chinese) doi: 10.3321/j.issn:1000-0992.2003.01.005

    [2]

    BYRNE B, HOULSBY G, MARTIN C, et al. Suction caisson foundations for offshore wind turbines[J]. Wind Engineering, 2002, 26(3): 145-155. doi: 10.1260/030952402762056063

    [3]

    SHONBERG A, HARTE M, AGHAKOUCHAK A, et al. Suction bucket jackets for offshore wind turbines: applications from in situ observations[C]// Proceedings of TC 209 Workshop – 19th International Conference on Soil Mechanics and Geotechnical Engineering. Seoul, 2017.

    [4]

    STURM H. Design aspects of suction caissons for offshore wind turbine foundations[C]// Proceedings of TC 209 Workshop – International Conference on Soil Mechanics and Geotechnical Engineering. Seoul, 2017.

    [5] 陈飞, 练继建, 马煜祥, 等. 粉砂中筒型基础沉贯过程筒-土作用机理试验研究[J]. 岩土工程学报, 2015, 37(4): 683-691. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504017.htm

    CHEN Fei, LIAN Jijian, MA Yuxiang, et al. Model tests on bucket-soil interaction during installation of bucket foundation in silt sand[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 683-691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504017.htm

    [6] 王胤, 朱兴运, 杨庆. 考虑砂土渗透性变化的吸力锚沉贯及土塞特性研究[J]. 岩土工程学报, 2019, 41(1): 184-190. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901025.htm

    WANG Yin, ZHU Xingyun, YANG Qing. Installation of suction caissons and formation of soil plug considering variation of permeability of sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 184-190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201901025.htm

    [7] 李大勇, 张雨坤, 高玉峰, 等. 中粗砂中吸力锚的负压沉贯模型试验研究[J]. 岩土工程学报, 2012, 34(12): 2277-2283. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm

    LI Dayong, ZHANG Yukun, GAO Yufeng, et al. Model tests on penetration of suction anchors in medium-coarse sand[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2277-2283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212022.htm

    [8]

    TRAN M N, RANDOLPH M F, AIREY D W. Study of seepage flow and sand plug loosening in installation of suction caissons in sand[C]// Proceedings of The Fifteenth International Offshore and Polar Engineering Conference. Korea, 2005.

    [9]

    RAGNI R, BIENEN B, STANIER S, et al. Observations during suction bucket installation in sand[J]. International Journal of Physical Modelling in Geotechnics, 2020, 20(3): 132-149. doi: 10.1680/jphmg.18.00071

    [10]

    ZEINODDINI M, MOUSAVI S A, ABDI M R. Simulation of suction caisson penetration in seabed using an adaptive mesh technique[J]. Procedia Engineering, 2011, 14: 1721-1728. doi: 10.1016/j.proeng.2011.07.216

    [11] 吕阳, 王胤, 杨庆. 吸力式筒形基础沉贯过程的大变形有限元模拟[J]. 岩土力学, 2015, 36(12): 3615-3624. doi: 10.16285/j.rsm.2015.12.035

    LÜ Yang, WANG Yin, YANG Qing. Large deformation finite element simulation of suction bucket foundation during penetration[J]. Rock and Soil Mechanics, 2015, 36(12): 3615-3624. (in Chinese) doi: 10.16285/j.rsm.2015.12.035

    [12] 丁红岩, 韩雪松, 张浦阳, 等. 离散元法模拟吸力锚施工中生成的土塞研究[J]. 海洋技术, 2004, 23(1): 52-56. doi: 10.3969/j.issn.1003-2029.2004.01.012

    DING Hongyan, HAN Xuesong, ZHANG Puyang, et al. The simulation of soil plug formed in constructing of suction anchor by discrete element method[J]. Ocean Technology, 2004, 23(1): 52-56. (in Chinese) doi: 10.3969/j.issn.1003-2029.2004.01.012

    [13]

    CHEN B F, HUANG T T. On fluid-filled mixture model for suction pile foundation analysis[J]. Ocean Engineering, 2019, 188: 106306. doi: 10.1016/j.oceaneng.2019.106306

    [14] 王胤, 艾军, 杨庆. 考虑粒间滚动阻力的CFD- DEM流-固耦合数值模拟方法[J]. 岩土力学, 2017, 38(6): 1771-1780. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm

    WANG Yin, AI Jun, YANG Qing. A CFD-DEM coupled method incorporating soil inter-particle rolling resistance[J]. Rock and Soil Mechanics, 2017, 38(6): 1771-1780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201706027.htm

    [15]

    ANDERSON T B, JACKSON R. Fluid mechanical description of fluidized beds. equations of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539.

    [16]

    AI J, CHEN J F, ROTTER J M, et al. Assessment of rolling resistance models in discrete element simulations[J]. Powder Technology, 2011, 206(3): 269-282. doi: 10.1016/j.powtec.2010.09.030

    [17]

    CHENG K, WANG Y, YANG Q, et al. Determination of microscopic parameters of quartz sand through tri-axial test using the discrete element method[J]. Computers and Geotechnics, 2017, 92: 22-40. doi: 10.1016/j.compgeo.2017.07.017

    [18]

    DI FELICE R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow, 1994, 20(1): 153-159. doi: 10.1016/0301-9322(94)90011-6

    [19]

    WANG Y, ZHOU L X, YANG Q. Hydro-mechanical analysis of calcareous sand with a new shape-dependent fluid-particle drag model integrated into CFD-DEM coupling program[J]. Powder Technology, 2019, 344: 108-120.

    [20]

    CLIFT R, GAUVIN W H. Motion of entrained particles in gas streams[J]. The Canadian Journal of Chemical Engineering, 1971, 49(4): 439-448.

    [21]

    WADELL H. The coefficient of resistance as a function of Reynolds number for solids of various shapes[J]. Journal of the Franklin Institute, 1934, 217(4): 459-490.

    [22] 吴野. 天然岩土颗粒材料液体中拖曳力系数试验研究[D]. 大连: 大连理工大学, 2017.

    WU Ye. Experimental Study on the Drag Force Coefficient of Natural Geotechnical Particle Materials in the Liquid[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)

    [23] 王胤, 周令新, 杨庆. 基于不规则钙质砂颗粒发展的拖曳力系数模型及其在细观流固耦合数值模拟中应用[J]. 岩土力学, 2019, 40(5): 2009-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905046.htm

    WANG Yin, ZHOU Lingxin, YANG Qing. New drag coefficient model for irregular calcareous sand particles and its application into fluid-particle coupling simulation[J]. Rock and Soil Mechanics, 2019, 40(5): 2009-2015. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201905046.htm

    [24]

    KLOSS C, GONIVA C L. A new open source discrete element simulation software[C]//Proceedings of 5th international conference on discrete element methods.

    [25]

    CHRLSTOPHER J G. The Open Source CFD Toolbox[R]. Paris: OpenCFD Ltd, 2009.

    [26] 朱兴运. 吸力锚基础负压沉贯阻力及土塞形成机理研究[D]. 大连: 大连理工大学, 2018.

    ZHU Xingyun. Research on Penetration Resistance and Formation Mechanism of Soil Plug during Suction Anchor Installation[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)

    [27]

    TJELTA T. The suction foundation technology[C]// Proceedings of the Third International Symposium Frontiers in Offshore Geotechnics, Oslo, 2015.

    [28]

    WANG Y, CHENG K, YANG Y F, et al. Microscopic mechanical analysis of sand production using a new arbitrary resolved-unresolved CFD-DEM model[J]. International Journal of Multiphase Flow, 2022, 149: 103979.

    [29]

    HOULSBY G T, BYRNE B W. Design procedures for installation of suction caissons in sand[J]. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 2005, 158(3): 135-144.

    [30]

    ANDERSEN K H, JOSTAD H P, DYVIK R. Penetration resistance of offshore skirted foundations and anchors in dense sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(1): 106-116.

    [31]

    GONZÁLEZ-MONTELLANO C, FUENTES J M, AYUGA-TÉLLEZ E, et al. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations[J]. Journal of Food Engineering, 2012, 111(4): 553-562.

    [32] 姚涛, 余建星, 李志刚, 等. 筒型基础贯入过程中的渗流分析[J]. 海岸工程, 2012, 31(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201201003.htm

    YAO Tao, YU Jianxing, LI Zhigang, et al. Analysis of seepage field in the penetration of bucket foundation[J]. Coastal Engineering, 2012, 31(1): 8-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HAGC201201003.htm

    [33]

    ERBRICH C T, TJELTA T I. Installation of bucket foundations and suction caissons in sand-geotechnical performance[C]// Proceedings of the 31th Annual Offshore Technology Conference. Texas, 1999.

    [34]

    HARIRECHE O, MEHRAVAR M, ALANI A M. Suction caisson installation in sand with isotropic permeability varying with depth[J]. Applied Ocean Research, 2013, 43: 256-263.

  • 期刊类型引用(4)

    1. 张平. FPSO内转塔单点吸力锚运输吊装分析. 石油和化工设备. 2025(01): 109-113 . 百度学术
    2. 周闯,钱建固,尹振宇. 各向异性砂土渗流潜蚀流体动力学-离散元流固耦合分析. 岩土力学. 2024(01): 302-312 . 百度学术
    3. 韩树鑫,邓学晶,李望晨,于龙,管龙飞. 吸力锚贯入引发的浅层水合物解离和储层孔隙压力再分布研究. 中国造船. 2024(03): 197-204 . 百度学术
    4. 郭敏,殷鹏程,勾红叶,谭庄,梁金宝. 洪水作用下高速铁路桥梁动力响应研究. 铁道标准设计. 2024(08): 99-107 . 百度学术

    其他类型引用(5)

图(12)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-12-19
  • 网络出版日期:  2023-02-23
  • 刊出日期:  2023-01-31

目录

    /

    返回文章
    返回