3D visualization of karst caves in tunnels based on GPR attribute analysis
-
摘要: 针对探地雷达法隧道内溶洞探测过程中存在位置标定模糊和形状确定困难等问题,提出了一种新的三维可视化方法。首先利用F-K偏移成像技术处理每条测线上的探地雷达数据,并根据坐标信息合成三维数据体,增强不同测线间的横向联系。然后通过属性分析提高探地雷达视图效果和有效反射数据的对比度,进而利用K-Means聚类方法提取溶洞反射数据的可视化振幅阈值参数。最后利用三维属性体和等值面提取技术实现隧道溶洞探地雷达三维可视化。模型试验和现场案例分析结果验证了本文方法的有效性,应用结果表明最大谱振幅属性不仅能够提高探地雷达视图效果,还能增强探地雷达数据体中有效反射数据的区分度,是本文方法较佳的输入属性。研究成果在一定程度上解决了探地雷达传统三维可视化方法振幅阈值设置时过度依赖解译人员经验问题,该方法适用于沉积岩层等层状介质解释。Abstract: The ground penetrating radar (GPR) can be used to detect and determine the scale, shape and position of hidden karst caves in tunnel construction, and it is very important for the protection of the tunnel construction safety and the hazard geology treatment. Due to the complexity of tunnel detection environment, the location calibration and the shape determination of the results for the traditional GPR 2D detection are difficult. However, due to the strong subjectivity of amplitude threshold setting, there is great uncertainty in the visualization process of GPR 3D data obtained based on the multiple survey lines. A 3D visualization method for the tunnel karst cave of GPR data is proposed. Firstly, to improve the imaging accuracy of karst cave targets, the F-K method is used to process each GPR B-scan. According to the coordinate information of GPR data, the GPR 3D data of the karst cave is synthesized to enhance the horizontal connection between different lines. Then, to improve the view effects and enhance the contrast of the effective reflection data, the method of GPR attribute analysis is used. The amplitude threshold of GPR 3D visualization of hidden karst cave is further extracted by using the K-means cluster method. Finally, the GPR 3D visualization of the tunnel karst cave can be realized by combining the attribute volume and the isosurface extraction technology. The reliability and adaptability of this method are verified by the model tests and field case analysis. The maximum spectral amplitude attribute is the optimal attribute of GPR signal in the proposed method, which may improve the radar view effect and enhance the contrast between the background and the effective reflection for GPR data. Furthermore, the proposed method solves the problem that the amplitude threshold setting of GPR 3D visualization excessively depends on the experience judgment of interpreters, and the results will be valuable for the stratigraphic analysis such as sedimentary strata.
-
-
-
[1] 李术才, 刘斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6): 1090-1113. doi: 10.13722/j.cnki.jrme.2014.06.003 LI Shucai, LIU Bin, SUN Huaifeng, et al. State of art and trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113. (in Chinese) doi: 10.13722/j.cnki.jrme.2014.06.003
[2] 刘新荣, 刘永权, 杨忠平, 等. 基于地质雷达的隧道综合超前预报技术[J]. 岩土工程学报, 2015, 37(增刊2): 51-56. doi: 10.11779/CJGE2015S2011 LIU Xinrong, LIU Yongquan, YANG Zhongping, et al. Synthetic advanced geological prediction technology for tunnels based on GPR[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 51-56. (in Chinese) doi: 10.11779/CJGE2015S2011
[3] 石少帅, 李术才, 李利平, 等. 岩溶区隧道暗河的综合预报及治理方案研究[J]. 岩土力学, 2012, 33(1): 227-232. doi: 10.3969/j.issn.1000-7598.2012.01.036 SHI Shaoshuai, LI Shucai, LI Liping, et al. Comprehensive geological prediction and management of underground river in Karst areas[J]. Rock and Soil Mechanics, 2012, 33(1): 227-232. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.01.036
[4] LI S C, ZHOU Z Q, YE Z H, et al. Comprehensive geophysical prediction and treatment measures of Karst caves in deep buried tunnel[J]. Journal of Applied Geophysics, 2015, 116: 247-257. doi: 10.1016/j.jappgeo.2015.03.019
[5] 刘宗辉, 吴一帆, 刘保东, 等. 隧道地质预报探地雷达信号干扰消除方法[J]. 工程科学学报, 2020, 42(3): 390-398. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202003015.htm LIU Zonghui, WU Yifan, LIU Baodong, et al. Research on the interference elimination method of GPR signal for tunnel geological prediction[J]. Chinese Journal of Engineering, 2020, 42(3): 390-398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202003015.htm
[6] LIU M M, LIU Z H, ZHOU D, et al. Recognition method of typical anomalies during Karst tunnel construction using GPR attributes and Gaussian processes[J]. Arabian Journal of Geosciences, 2020, 13(16): 791. doi: 10.1007/s12517-020-05782-0
[7] 刘东坤, 巨能攀, 霍宇翔. 地质雷达在不同介质填充下的频谱差异分析[J]. 现代隧道技术, 2013, 50(5): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201305005.htm LIU Dongkun, JU Nengpan, HUO Yuxiang. Analysis of the spectrum difference of ground penetrating radar (GPR) for different media fillings[J]. Modern Tunnelling Technology, 2013, 50(5): 23-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201305005.htm
[8] 刘宗辉, 刘毛毛, 周东, 等. 基于探地雷达属性分析的典型岩溶不良地质识别方法[J]. 岩土力学, 2019, 40(8): 3282-3290. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908046.htm LIU Zonghui, LIU Maomao, ZHOU Dong, et al. Recognition method of typical anomalies in karst tunnel construction based on attribute analysis of ground penetrating radar[J]. Rock and Soil Mechanics, 2019, 40(8): 3282-3290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908046.htm
[9] REIS J A D Jr, DE CASTRO D L, DE JESUS T E S, et al. Characterization of collapsed paleocave systems using GPR attributes[J]. Journal of Applied Geophysics, 2014, 103: 43-56.
[10] 李尧, 李术才, 刘斌, 等. 基于改进后向投影算法的地质雷达探测岩体裂隙的成像方法[J]. 岩土工程学报, 2016, 38(8): 1425-1433. doi: 10.11779/CJGE201608009 LI Yao, LI Shucai, LIU Bin, et al. Imaging method of ground penetrating radar for rock fracture detection based on improved back projection algorithm[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1425-1433. (in Chinese) doi: 10.11779/CJGE201608009
[11] ZHU S P, HUANG C L, SU Y, et al. 3D ground penetrating radar to detect tree roots and estimate root biomass in the field[J]. Remote Sensing, 2014, 6(6): 5754-5773.
[12] 邓海明, 杨曦, 李志山, 等. 一种基于半空间扫描测量模式的隧道坍腔地质雷达三维成像技术[J]. 现代隧道技术, 2021, 58(3): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202103007.htm DENG Haiming, YANG Xi, LI Zhishan, et al. A 3D GPR imaging technique of tunnel cavities based on the half-space scanning measurement mode[J]. Modern Tunnelling Technology, 2021, 58(3): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202103007.htm
[13] 胡群芳, 郑泽昊, 刘海, 等. 三维探地雷达在城市市政管线渗漏探测中的应用[J]. 同济大学学报(自然科学版), 2020, 48(7): 972-981. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202007006.htm HU Qunfang, ZHENG Zehao, LIU Hai, et al. Application of 3D ground penetrating radar to leakage detection of urban underground pipes[J]. Journal of Tongji University (Natural Science), 2020, 48(7): 972-981. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202007006.htm
[14] BENEDETTO A. A three-dimensional approach for tracking cracks in bridges using GPR[J]. Journal of Applied Geophysics, 2013, 97: 37-44.
[15] ŻUK T, SYDOR P, SAMBROOK S G H. Late-Holocene wind-field evolution at the southern Baltic coast as revealed by GPR data from the Mrzeżyno dunefield, NW Poland[J]. Boreas, 2017, 46(3): 470-485.
[16] LEUCCI G, NEGRI S. Use of ground penetrating radar to map subsurface archaeological features in an urban area[J]. Journal of Archaeological Science, 2006, 33(4): 502-512.
[17] ZHAO W K, FORTE E, FONTOLAN G, et al. Advanced GPR imaging of sedimentary features: integrated attribute analysis applied to sand dunes[J]. Geophysical Journal International, 2018, 213(1): 147-156.
[18] ZHAO W K, TIAN G, FORTE E, et al. Advances in GPR data acquisition and analysis for archaeology[J]. Geophysical Journal International, 2015, 202(1): 62-71.
[19] FORTE E, PIPAN M, CASABIANCA D, et al. Imaging and characterization of a carbonate hydrocarbon reservoir analogue using GPR attributes[J]. Journal of Applied Geophysics, 2012, 81: 76-87.
[20] ZHAO W K, FORTE E, PIPAN M, et al. Ground penetrating radar (GPR) attribute analysis for archaeological prospection[J]. Journal of Applied Geophysics, 2013, 97: 107-117.
[21] CHEN J W, QI X M, CHEN L F, et al. Quantum-inspired ant lion optimized hybrid K-means for cluster analysis and intrusion detection[J]. Knowledge-Based Systems, 2020, 203: 106167.
[22] 修志杰, 陈洁, 方广有, 等. 基于F-K偏移及最小熵技术的探地雷达成像法[J]. 电子与信息学报, 2007, 29(4): 827-830. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200704015.htm XIU Zhijie, CHEN Jie, FANG Guangyou, et al. Ground penetrating radar imaging based on F-K migration and minimum entropy method[J]. Journal of Electronics & Information Technology, 2007, 29(4): 827-830. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200704015.htm
[23] 张军, 陈思茹, 张子琛, 等. 基于GPR和F-K法的桥面隐性病害无损检测方法[J]. 中国公路学报, 2016, 29(7): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607018.htm ZHANG Jun, CHEN Siru, ZHANG Zichen, et al. Non-destructive detection method for bridge hidden diseases based on GPR and F-K method[J]. China Journal of Highway and Transport, 2016, 29(7): 110-116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607018.htm
-
期刊类型引用(1)
1. 孙胜难,袁铸钢,刘钊,马洪浩. 基于随机森林回归算法的水泥立式磨磨内压差预测. 洛阳理工学院学报(自然科学版). 2024(02): 44-50 . 百度学术
其他类型引用(6)