Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

单粒组冻结砂土三轴压缩颗粒破碎规律研究

陈榕, 孙鹤, 郝冬雪, 武智勇, 高宇聪

陈榕, 孙鹤, 郝冬雪, 武智勇, 高宇聪. 单粒组冻结砂土三轴压缩颗粒破碎规律研究[J]. 岩土工程学报, 2022, 44(S1): 92-97. DOI: 10.11779/CJGE2022S1017
引用本文: 陈榕, 孙鹤, 郝冬雪, 武智勇, 高宇聪. 单粒组冻结砂土三轴压缩颗粒破碎规律研究[J]. 岩土工程学报, 2022, 44(S1): 92-97. DOI: 10.11779/CJGE2022S1017
CHEN Rong, SUN He, HAO Dong-xue, WU Zhi-yong, GAO Yu-cong. Particle breakage characteristics of frozen ideal uniform sands under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 92-97. DOI: 10.11779/CJGE2022S1017
Citation: CHEN Rong, SUN He, HAO Dong-xue, WU Zhi-yong, GAO Yu-cong. Particle breakage characteristics of frozen ideal uniform sands under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 92-97. DOI: 10.11779/CJGE2022S1017

单粒组冻结砂土三轴压缩颗粒破碎规律研究  English Version

基金项目: 

国家自然科学基金项目 52078108

吉林省科技厅中青年科技创新领军人才及团队项目 20210509058RQ

吉林省教育厅科学研究项目 JJKH20210103KJ

详细信息
    作者简介:

    陈榕(1979—),男,辽宁沈阳人,博士,教授,主要从事土工合成材料加筋特性及软弱地基加固处理方法等方面的教学和科研工作。E-mail: lg1316cih@126.com

    通讯作者:

    郝冬雪, E-mail: haodongxue2005@126.com

  • 中图分类号: TU432

Particle breakage characteristics of frozen ideal uniform sands under triaxial compression

  • 摘要: 针对三种不同粒径的单粒组冻结砂土开展三轴剪切试验,重点研究剪切过程中冻结砂土颗粒破碎演化规律及粒径对冻土颗粒破碎的影响。结果表明:冻结温度为-1℃和-2℃时,围压σ3≥5 MPa情况下冻结砂土出现明显压融,并且在-1℃时由于局部快速压融导致冻结砂土出现抗剪强度低于未冻土现象;冻结砂土在剪切过程中出现颗粒破碎现象,颗粒破碎率随轴向应变增大持续增长,在高围压(σ3≥5 MPa)下甚至出现加速增长趋势;冻结砂土颗粒破碎率规律与未冻砂土不同,小粒组冻结砂土颗粒破碎率最大,该现象可能与冻土内部不同部位的冰晶作用有关。
    Abstract: The triaxial shear tests on three groups of frozen ideal sands are carried out to investigate the evolution rules of particle breakage during shearing process and the effects of particle size on the particle breakage. It is shown that obvious pressure melting of sand samples takes place under -1℃ ~ -2℃ when σ3 ≥5 MPa, and the strength of frozen sands is even less than the unfrozen strength due to rapid melting near shearing rupture plane at -1℃. The particle breakage of frozen sands occurs during shearing. The particle breakage rate continues to increase with the increase of the axial strain, and even develops with the acceleration after the peak strength under high confining pressure (σ3 ≥5 MPa). The influences of the particle size of frozen sands on the breakage rate is different from those of unfrozen sands. The particle breakage rate of the frozen sands of small particle group is the largest, which may be related to the action of ice crystals in different parts of frozen soils.
  • 图  1   不同温度下砂样d2的qε1关系

    Figure  1.   Curves between q and ε1under different temperatures (Sample d2)

    图  2   不同温度下qfσ3关系曲线(砂样d2)

    Figure  2.   Relationship between qf and σ3 under different temperatures (Sample d2)

    图  3   三种粒径冻结砂土qε1关系曲线

    Figure  3.   Relationship between q andε1 for frozen sands with different d50

    图  4   不同温度下剪切结束后的颗粒相对破碎率

    Figure  4.   Values of Br under different frozen temperatures (ε1=20%)

    图  5   三种粒组砂样的颗粒相对破碎率

    Figure  5.   Relative breakage rates of three sand samples

    图  6   不同围压下相对破碎率的发展

    Figure  6.   Development of Br under various confining pressures

    表  1   石英砂物理参数

    Table  1   Physical parameters of quartz sand

    砂样 粒径范围d/mm d50/mm emax emin e
    d1 0.25~0.50 0.375 0.949 0.648 0.708
    d2 0.50~1.00 0.75 0.804 0.552 0.602
    d3 1.00~2.00 1.5 0.768 0.534 0.581
    下载: 导出CSV
  • [1]

    ARENSON L U, JOHANSEN M M, SPRINGMAN S M. Effects of volumetric ice content and strain rate on shear strength under triaxial conditions for frozen soil samples[J]. Permafrost and Periglacial Processes, 2004, 15(9): 261–271.

    [2] 牛亚强, 赖远明, 王旭, 等. 初始含水率对冻结粉质黏土变形和强度的影响规律研究[J]. 岩土力学, 2016, 37(2): 499–506. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602026.htm

    NIU Ya-qiang, LAI Yuan-ming, WANG Xu, et al. Research on influences of initial water content on deformation and strength behaviors of frozen silty clay[J]. Rock and Soil Mechanics, 2016, 37(2): 499–506. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201602026.htm

    [3] 杜海民, 马巍, 张淑娟, 等. 围压与含水率对冻结砂土破坏应变能密度影响特性研究[J]. 岩土力学, 2017, 38(7): 1943–1950. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707013.htm

    DU Hai-min, MA Wei, ZHANG Shu-juan, et al. Effects of confining pressure and water content on failure strain energy density for frozen silty sands[J]. Rock and Soil Mechanics, 2017, 38(7): 1943–1950. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707013.htm

    [4] 王大雁, 马巍, 常小晓. K0固结后卸载状态下冻土应力–应变特性研究[J]. 岩石力学与工程学报, 2004, 23(8): 1252–1256. doi: 10.3321/j.issn:1000-6915.2004.08.004

    WANG Da-yan, MA Wei, CHANG Xiao-xiao. Study on behavior of stress-strain for frozen soils subjected to K0 consolidation by unloading triaxial shear tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(8): 1252–1256. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.08.004

    [5] 吴超, 张淑娟, 周志伟, 等. 围压路径对冻结粉质砂土变形行为及强度的影响研究[J]. 冰川冻土, 2016, 38(6): 1575–1582. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201606014.htm

    WU Chao, ZHANG Shu-juan, ZHOU Zhi-wei, et al. A study of the effect of confining pressure path on strength and deformation of frozen silty sand[J]. Journal of Glaciology and Geocryology, 2016, 38(6): 1575–1582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201606014.htm

    [6] 赖远明, 程红彬, 高志华, 等. 冻结砂土的应力–应变关系及非线性莫尔强度准则[J]. 岩石力学与工程学报, 2007, 26(8): 1612–1617. doi: 10.3321/j.issn:1000-6915.2007.08.011

    LAI Yuan-ming, CHENG Hong-bin, GAO Zhi-hua, et al. Stress-strain relationships and nonlinear Mohr strength criterion of frozen sand clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1612–1617. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.011

    [7]

    QI J, MA W. A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure[J]. Acta Geotechnica, 2007, 2(3): 221–226. doi: 10.1007/s11440-007-0034-z

    [8] 张德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978–986. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804020.htm

    ZHANG De, LIU En-long, LIU Xing-yan, et al. A damage constitutive model for frozen sandy soils based on modified Mohr-Coulomb yield criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 978–986. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201804020.htm

    [9] 张家铭, 汪稔, 张阳明, 等. 土体颗粒破碎研究进展[J]. 岩土力学, 2003, 24(增刊2): 661–665. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2157.htm

    ZHANG Jia-ming, Wang Ren, ZHANG Yang-ming, et al. Advance in studies of soil grain crush[J]. Rock and Soil Mechanics, 2003, 24(S2): 661–665. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2003S2157.htm

    [10] 蒙进, 屈智炯. 高压下冰碛土的颗粒破碎及应力应变关系[J]. 成都科技大学学报, 1989, 21(1): 17–22, 56. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198901002.htm

    MENG Jin, QU Zhi-jiong. Stress-strain behavior of glacial till under high confining pressure[J]. Journal of Chengdu University of Technology, 1989, 21(1): 17–22, 56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH198901002.htm

    [11] 张季如, 胡泳, 张弼文, 等. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784–791. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    ZHANG Ji-ru, HU Yong, ZHANG Bi-wen. Fractal behavior of particle-size distribution during particle crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784–791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201505004.htm

    [12] 马巍, 吴紫汪, 常小晓, 等. 围压作用下冻结砂土微结构变化的电镜分析[J]. 冰川冻土, 1995, 17(2): 152–158. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm

    MA Wei, WU Zi-wang, CHANG Xiao-xiao, et al. Analysis of microstructural changes in frozen sandy soil under confining pressures by using scaning electronic microscope[J]. Journal of Glaciology and Geocryology, 1995, 17(2): 152–158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT502.008.htm

    [13] 马玲, 齐吉琳, 余帆, 等. 冻结砂土三轴试验中颗粒破碎研究[J]. 岩土工程学报, 2015, 37(3): 544–550. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503023.htm

    MA Ling, QI Ji-lin, YU Fan, et al. Particle crushing of frozen sand under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(3): 544–550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201503023.htm

    [14] 罗飞, 何俊霖, 朱占元, 等. 考虑颗粒破碎的冻结砂土非线性本构模型研究[J]. 地质力学学报, 2018, 24(6): 871–878. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201806023.htm

    LUO Fei, HE Jun-lin, ZHU Zhan-yuan, et al. A study on nonlinear constitutive model of frozen sand considering particle breakage[J]. Chinese Journal of Geomechanics, 2018, 24(6): 871–878. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201806023.htm

    [15] 郝冬雪, 岳冲, 陈榕, 等. 常压至高压下中砂剪切特性及应力–剪胀关系[J]. 岩土工程学报, 2020, 42(4): 765–772. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004027.htm

    HAO Dong-xue, YUE Chong, CHEN Rong, et al. Shear characteristics and stress-dilation relation of medium sand under normal to high pressures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 765–772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004027.htm

    [16] 耿爽. 高应力条件下中密砂和密砂颗粒破碎规律试验研究[D]. 吉林: 东北电力大学, 2020.

    GENG Shuang, Experimental Study on Particles Breakage Rules of Medium and Dense Sand Under High Pressure[D]: Jilin: Northeast Electric Power University, 2020. (in Chinese)

    [17] 马巍, 吴紫汪, 张立新, 等. 高围压下冻土强度弱化机理分析[J]. 冰川冻土, 1999, 21(1): 27–31. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199901005.htm

    MA Wei, WU Zi-wang, ZHANG Li-xin, et al. Mechanisms of strength of frozen soils under high confining pressure[J]. Journal of Glaciology and Geocryology, 1999, 21(1): 27–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT199901005.htm

    [18]

    EINAV I. Breakage mechanics–part Ⅰ: theory[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(6): 1274–1297.

图(6)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-21
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回