Improved convective particle domain interpolation material point method for large deformation analysis of tunnels
-
摘要: 物质点法(MPM)在模拟大变形问题时具有很好的效果,然而传统的MPM在粒子穿越网格边界时存在单元穿越误差,导致精度降低。为克服传统MPM的单元穿越误差,基于对流粒子域插值物质点法(CPDI)理论框架,采用自适应正交改进插值移动最小二乘法(AOIIMLS),提出了改进CPDI方法。AOIIMLS通过构造加权正交基函数,并且忽略了新对角矩阵中的零元素或极小元素的贡献,以避免求解逆矩阵,增强了鲁棒性。改进CPDI采用速度梯度计算粒子域的速度场,粒子速度和粒子域角点速度用于重构背景网格速度函数。通过一维柱在自重作用下的压缩、砂柱坍塌和隧道坍塌离心机试验验证了改进CPDI方法的准确性和适用性,结果表明改进CPDI降低了单元穿越误差,得到了更高的精度。最后,采用改进CPDI方法模拟了青岛地铁4号线静沙区间地面塌陷全过程,验证了改进CPDI方法在岩土工程大变形领域的适用性及优势。
-
关键词:
- 物质点法 /
- 对流粒子域插值 /
- 自适应正交改进移动最小二乘法 /
- 隧道大变形
Abstract: The material point method (MPM) has good effects in simulating large deformation problems. However, the conventional MPM suffers from cell-crossing errors when particles cross grid boundaries, resulting in reduced accuracy. In order to overcome the cell-crossing errors of the conventional MPM, an improved convective particle domain interpolation material point method (CPDI) is proposed based on the conventional CPDI framework and the adaptive orthogonal improved interpolation moving least squares method (AOIIMLS). By constructing weighted orthogonal basis functions and disregarding the minimal or zero elements in the new diagonal matrix, the inverse matrix computation is avoided, and the robustness is enhanced. In the improved CPDI method, the particle domain velocity field is calculated using the velocity gradients, and the AOIIMLS shape functions are employed to reconstruct the background grid velocity function using the particle velocity and particle domain corner point velocity. The accuracy and applicability of the improved CPDI method are verified through simulations of various scenarios such as the compaction of a one-dimensional column under self-weight, the collapse of a sand column and the centrifuge tests on tunnel collapse. The results show that the improved CPDI method reduces the cell-crossing errors caused by the particles cross grid boundaries and achieves higher accuracy. Finally, the improved CPDI method is employed to simulate the whole process of ground collapse in the Jinggang Road Station–Shazikou Station tunnel section of Qingdao Metro Line 4, effectively confirming the applicability and advantages of the method in addressing large deformation problems in geotechnical engineering. -
-
表 1 地层物理力学参数
Table 1 Physical and mechanical parameters of strata
地层 弹性模量E/MPa 泊松比 黏聚力c/kPa 内摩擦角φ/(°) 重度γ/(kN·m-3) 杂填土 8.0 0.20 0 15 17.5 中粗砂 6.07 0.33 13.9 12.5 18.5 粉质黏土 5.671 0.30 8.2 12 19.7 强风化凝灰岩 20 0.30 3.0 30 22.5 中风化凝灰岩 50 0.25 3000 45 26.0 微风化凝灰岩 5000 0.22 11500 55 26.7 -
[1] 张成平, 张顶立, 王梦恕, 等. 城市隧道施工诱发的地面塌陷灾变机制及其控制[J]. 岩土力学, 2010, 31(增刊1): 303-309. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1050.htm ZHANG Chengping, ZHANG Dingli, WANG Mengshu, et al. Catastrophe mechanism and control technology of ground collapse induced by urban tunneling[J]. Rock and Soil Mechanics, 2010, 31(S1): 303-309. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1050.htm
[2] SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 18(1/2): 179-196.
[3] SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87(1/2): 236-252.
[4] HARLOW F H. The Particle-in-cell Method for Numerical Solution of Problems in Fluid Dynamics[R]. Los Alamos: Los Alamos National Lab, 1962.
[5] BRACKBILL J U, KOTHE D B, RUPPEL H M. Flip: a low-dissipation, particle-in-cell method for fluid flow[J]. Computer Physics Communications, 1988, 48(1): 25-38. doi: 10.1016/0010-4655(88)90020-3
[6] BRACKBILL J U, RUPPEL H M. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions[J]. Journal of Computational Physics, 1986, 65(2): 314-343. doi: 10.1016/0021-9991(86)90211-1
[7] BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers and Geotechnics, 2015, 63: 199-214. doi: 10.1016/j.compgeo.2014.09.009
[8] CUOMO S, PERNA A D, MARTINELLI M. Material point method (MPM) hydro-mechanical modelling of flows impacting rigid walls[J]. Canadian Geotechnical Journal, 2021, 58: 1730-1743. doi: 10.1139/cgj-2020-0344
[9] 王兆南, 王刚. 饱和孔隙介质的耦合物质点-特征有限元方法[J]. 岩土工程学报, 2023, 45(5): 1094-1102. doi: 10.11779/CJGE20220332 WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. (in Chinese) doi: 10.11779/CJGE20220332
[10] 孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225. doi: 10.11779/CJGE201507007 SUN Yujin, SONG Erxiang. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1225. (in Chinese) doi: 10.11779/CJGE201507007
[11] 钟祖良, 贺凯源, 宋宜祥, 等. 基于仿射速度矩阵改进物质点法的大位移滑坡研究[J]. 岩土工程学报, 2022, 44(9): 1626-1634. doi: 10.11779/CJGE202209007 ZHONG Zuliang, HE Kaiyuan, SONG Yixiang, et al. Large-displacement landslides based on affine velocity matrix-improved material point method[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1626-1634. (in Chinese) doi: 10.11779/CJGE202209007
[12] CUOMO S, PERNA A D, MARTINELLI M. Modelling the spatio-temporal evolution of a rainfall-induced retrogressive landslide in an unsaturated slope[J]. Engineering Geology, 2021, 294: 106371. doi: 10.1016/j.enggeo.2021.106371
[13] CORTIS M, COOMBS W, AUGARDE C, BROWN M, BRENNAN A, ROBINSON S. Imposition of essential boundary conditions in the material point method[J]. International Journal for Numerical Methods in Engineering, 2018, 113: 130-152. doi: 10.1002/nme.5606
[14] BARDENHAGEN S G, KOBER E M. The Generalized interpolation material point method[J]. Computer Modeling in Engineering and Sciences, 2004, 5(6): 477-495.
[15] SADEGHIRAD A, BRANNON R M, BURGHARDT J. A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(12): 1435-1456. doi: 10.1002/nme.3110
[16] SADEGHIRAD A, BRANNON R M, GUILKEY J E. Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces[J]. International Journal for Numerical Methods in Engineering, 2013, 95(11): 928-952. doi: 10.1002/nme.4526
[17] PRUIJN N S. The improvement of the Material Point Method by Increasing Efficiency and Accuracy[D]. Delft: Delft University of Technology, 2016.
[18] STEFFEN M, KIRBY R M, BERZINS M. Analysis and reduction of quadrature errors in the material point method (MPM)[J]. International Journal for Numerical Methods in Engineering, 2008, 76(6): 922-948. doi: 10.1002/nme.2360
[19] STEFFEN M, WALLSTEDT P C, GUILKEY J E, et al. Examination and analysis of implementation choices within the material point method (MPM)[J]. Computer Modeling in Engineering and Sciences, 2008, 31(2): 107-127.
[20] HU Y M, FANG Y, GE Z H, et al. A moving least squares material point method with displacement discontinuity and two-way rigid body coupling[J]. ACM Transactions on Graphics, 2018, 37(4): 1-14.
[21] SONG J U, KIM H G. An improved material point method using moving least square shape functions[J]. Computational Particle Mechanics, 2021, 8(4): 751-766. doi: 10.1007/s40571-020-00368-9
[22] WANG J F, SUN F X, CHENG Y M. An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems[J]. Chinese Physics B, 2012, 21(9): 090204. doi: 10.1088/1674-1056/21/9/090204
[23] WANG J F, WANG J F, SUN F, et al. An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems[J]. International Journal of Computational Methods, 2013, 10(6): 1350043. doi: 10.1142/S0219876213500436
[24] WANG Q, ZHOU W, FENG Y T, et al. An adaptive orthogonal improved interpolating moving least-square method and a new boundary element-free method[J]. Applied Mathematics and Computation, 2019, 353: 347-370. doi: 10.1016/j.amc.2019.02.013
[25] MIRZAEI D. Analysis of moving least squares approximation revisited[J]. Journal of Computational and Applied Mathematics, 2015, 282: 237-250. doi: 10.1016/j.cam.2015.01.007
[26] TRAN Q A, SOŁOWSKI W, BERZINS M, et al. A convected particle least square interpolation material point method[J]. International Journal for Numerical Methods in Engineering, 2019, 121(6): 1068-1100.
[27] WALLSTEDT P C, GUILKEY J E. An evaluation of explicit time integration schemes for use with the generalized interpolation material point method[J]. Journal of Computational Physics, 2008, 227(22): 9628-9642. doi: 10.1016/j.jcp.2008.07.019
[28] WYSER E, ALKHIMENKOV Y, JABOYEDOFF M, et al. A fast and efficient MATLAB-based MPM solver: fMPMM-solver v1.1[J]. Geoscientific Model Development, 2020, 13(12): 6265-6284. doi: 10.5194/gmd-13-6265-2020
[29] COOMBS W M, AUGARDE C. AMPLE: a material point learning environment[J]. Advances in Engineering Software, 2020, 139: 102748. doi: 10.1016/j.advengsoft.2019.102748
[30] LUBE G, HUPPERT H E, SPARKS R S J, et al. Collapses of two-dimensional granular columns[J]. Physical Review E Statistical, Nonlinear, Biological and Soft Matter Physics, 2005, 72(4): 041301. doi: 10.1103/PhysRevE.72.041301
[31] LUBE G, HUPPERT H E, SPARKS R S J, et al. Static and flowing regions in granular collapses down channels: insights from a sedimenting shallow water model[J]. Physics of Fluids, 2007, 19(10): 106601. doi: 10.1063/1.2773738
[32] KAMATA H, MASHIMO H. Centrifuge model test of tunnel face reinforcement by bolting[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 205-212.
[33] CHENG X S, ZHENG G, SOGA K, et al. Post-failure behavior of tunnel heading collapse by MPM simulation[J]. Science China Technological Sciences, 2015, 58(12): 2139-2153. doi: 10.1007/s11431-015-5874-4
[34] ZHANG Y J, ZHANG W G, XIA H S, et al. Case study and risk assessment of water inrush disaster in Qingdao Metro Line 4[J]. Applied Sciences, 2023, 13: 3384. doi: 10.3390/app13063384
[35] YAN F Y, QIU W G, SUN K G, et al. Investigation of a large ground collapse, water inrush and mud outburst, and countermeasures during subway excavation in Qingdao: a case study[J]. Tunnelling and Underground Space Technology, 2021, 117: 104127. doi: 10.1016/j.tust.2021.104127
-
其他相关附件