• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基坑倾斜桩支护性能及机理大型模型试验研究

郑刚, 王玉萍, 程雪松, 余地华, 张鹏, 程文隆, 赵悦镔, 李昕昊

郑刚, 王玉萍, 程雪松, 余地华, 张鹏, 程文隆, 赵悦镔, 李昕昊. 基坑倾斜桩支护性能及机理大型模型试验研究[J]. 岩土工程学报, 2021, 43(9): 1581-1591. DOI: 10.11779/CJGE202109002
引用本文: 郑刚, 王玉萍, 程雪松, 余地华, 张鹏, 程文隆, 赵悦镔, 李昕昊. 基坑倾斜桩支护性能及机理大型模型试验研究[J]. 岩土工程学报, 2021, 43(9): 1581-1591. DOI: 10.11779/CJGE202109002
ZHENG Gang, WANG Yu-ping, CHENG Xue-song, YU Di-hua, ZHANG Peng, CHENG Wen-long, ZHAO Yue-bin, LI Xin-hao. Large-scale model tests on performance and mechanism of inclined retaining structures of excavations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1581-1591. DOI: 10.11779/CJGE202109002
Citation: ZHENG Gang, WANG Yu-ping, CHENG Xue-song, YU Di-hua, ZHANG Peng, CHENG Wen-long, ZHAO Yue-bin, LI Xin-hao. Large-scale model tests on performance and mechanism of inclined retaining structures of excavations[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1581-1591. DOI: 10.11779/CJGE202109002

基坑倾斜桩支护性能及机理大型模型试验研究  English Version

基金项目: 

国家自然科学基金重点项目 41630641

天津市自然科学基金项目 18JCQNJC07900

详细信息
    作者简介:

    郑刚(1967— ),男,博士,教授,博士生导师,从事土力学及岩土工程教学与科研工作。E-mail:zhenggang1967@163.com

    通讯作者:

    程雪松, E-mail:cheng_xuesong@163.com

  • 中图分类号: TU473.2

Large-scale model tests on performance and mechanism of inclined retaining structures of excavations

  • 摘要: 倾斜桩支护是较为新型的基坑无支撑支护体系,已有工程案例证明其支护性能较好,然而其支护机理尚缺乏深入研究及试验佐证。运用大型室内模型试验研究了多种倾斜桩支护结构的变形及受力特征,并分析揭示了其工作机理。试验结果表明,与悬臂支护桩相比,纯斜桩支护结构主动区土压力减小,使得变形和内力均减小;而相比悬臂直桩和纯斜桩,倾斜桩组合支护结构由于具有自撑、刚架和重力三大效应,变形及内力更小,稳定性更高。倾斜桩组合支护结构自身形成一个空间刚架,内排桩和外排桩分别发挥了类似斜撑(受压)和锚杆(受拉)的作用,受力和变形特征更接近采用内支撑的支护体系;外排桩受到的主动区摩阻力、内外排桩间土体重力均可提供抗倾覆力矩,提高了支护结构抗倾覆能力。内外排桩夹角相同时,内斜直及内外斜组合结构支护性能优于外斜直组合。
    Abstract: The inclined retaining structure is a relatively new braceless retaining system. The existing cases have proved that its retaining performance is better, but its working mechanism still lacks in-depth researches. In this study, the retaining performance and stability of various inclined retaining structures are investigated through large-scale model tests, and the working mechanism is analyzed and revealed. The test results show that for the purely inclined pile, the earth pressure acting on the retaining pile in the active zone of excavation decreases, making its deformation and internal force smaller than those of the cantilever pile. Compared with the cantilever piles and the purely inclined piles, due to the self-supporting effect, rigid frame effect and gravity effect, the composite inclined retaining structures have smaller deformation and internal force but higher stability, and they form a rigid frame. The inner and outer row of piles respectively play roles similar to the inclined struts (compression) and the anchors (tension), making the force and deformation characteristics of the supporting structures close to those of the retaining structures with struts. The anti-overturning moment can be provided by the friction resistance in the active zone of the outer row of piles and the gravity of soil between the inner and outer rows of piles, which improves the anti-overturning ability of the retaining structures. With the same angle between the inner and outer rows of piles, the retaining performance of composite in the ward-inclined and outward-inclined piles is better than that of the composite vertical and inward-inclined piles.
  • 图  1   4类典型基坑倾斜桩支护结构空间示意图

    Figure  1.   Diagrams of four types of inclined retaining structures

    图  2   场地土层和内斜直组合20°支护剖面图

    Figure  2.   Profile of soil layers and composite vertical and inward-inclined piles with inclination of 20°

    图  3   悬臂直桩和内斜直组合20°的现场监测结果

    Figure  3.   Monitoring results of cantilever pile and composite vertical and inward-inclined piles with inclination of 20°

    图  4   大型砂土基坑模型试验平台

    Figure  4.   Model test platform for excavation in sand

    图  5   倾斜桩组合支护模型试验布置图

    Figure  5.   Experimental layout of composite inclined pile structures

    图  6   激光位移传感器布置图

    Figure  6.   Layout of laser displacement sensors

    图  7   基坑模型撒砂完成

    Figure  7.   Completion of sanding excavation model

    图  8   内斜直组合20°支护基坑开挖过程

    Figure  8.   Process of excavation retained by composite vertical and inward-inclined piles with inclination of 20°

    图  9   不同支护类型桩顶水平位移随基坑开挖深度变化曲线

    Figure  9.   Variation curve of horizontal displacement at top of retaining piles with excavation depth

    图  10   支护桩桩身位移曲线随基坑开挖深度变化

    Figure  10.   Variation curves of displacement of retaining piles with excavation depth

    图  11   各支护结构最大水平位移和最大弯矩对比

    Figure  11.   Comparison between maximum horizontal displacement and bending moment of different retaining structures

    图  12   基坑外土体沉降曲线

    Figure  12.   Curves of settlement of soil outside excavation

    图  13   内斜直组合支护结构土压力曲线随挖深变化

    Figure  13.   Curves of earth pressure of retaining piles during excavation

    图  14   挖深80 cm各支护结构支护桩土压力对比

    Figure  14.   Comparison of earth pressure of retaining piles at excavation of 80 cm

    图  15   各类支护结构及其桩间土的整体受力分析示意图

    Figure  15.   Diagram of overall stress analysis of various support structures and soil between piles

    图  16   支护桩弯矩随基坑开挖深度变化曲线

    Figure  16.   Variation curves of bending moment of retaining piles with depth

    图  17   支护桩轴力随基坑开挖深度变化曲线

    Figure  17.   Variation curves of axial force of retaining piles with excavation depth

    图  18   倾斜桩组合支护桩开挖80 cm轴力对比

    Figure  18.   Comparison of maximum axial force of retaining piles at excavation of 80 cm

    图  19   接近倾覆破坏时倾斜桩支护基坑滑动面开展情况

    Figure  19.   Sliding faces of excavation retained by inclined piles

    表  1   试验用干细砂的基本参数

    Table  1   Parameters of sand used in model tests

    参数Gs平均粒径d50/mm不均匀系数Cu最大孔隙比emax最小孔隙比emin峰值摩擦角φ/(°)
    数值2.650.282.150.7610.53331
    下载: 导出CSV
  • [1]

    PECK R B. Deep excavations and tunneling in soft ground[C]//Proc 7th Int Conf on Soil Mechanics and Foundation Engineering, Univ Nacional Autonoma de Mexico Instituto de Ingenira, 1969, Mexico City.

    [2]

    MU L, HUANG M. Small strain based method for predicting three-dimensional soil displacements induced by braced excavation[J]. Tunnelling and Underground Space Technology, 2016, 52: 12-22. doi: 10.1016/j.tust.2015.11.001

    [3]

    LIAO H J, LIN C C. Case studies on bermed excavation in Taipei silty soil[J]. Canadian Geotechnical Journal, 2009, 46(8): 889-902. doi: 10.1139/T09-034

    [4]

    LEE C, WEI Y, CHEN H, et al. Stability analysis of cantilever double soldier-piled walls in sandy soil[J]. Journal of the Chinese Institute of Engineers, 2011, 34(4): 449-465. doi: 10.1080/02533839.2011.576488

    [5] 郑刚, 郭一斌, 聂东清, 等. 大面积基坑多级支护理论与工程应用实践[J]. 岩土力学, 2014, 35(增刊2): 290-298. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2041.htm

    ZHENG Gang, GUO Yi-bin, NIE Dong-qing, et al. Theory of multi-bench retaining for large area foundation pit and its engineering application[J]. Rock and Soil Mechanics, 2014, 35(S2): 290-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2014S2041.htm

    [6] 任望东, 张同兴, 张大明, 等. 深基坑多级支护破坏模式及稳定性参数分析[J]. 岩土工程学报, 2013, 35(增刊2): 919-922. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2173.htm

    REN Wang-dong, ZHANG Tong-xing, ZHANG Da-ming, et al. Parametric analysis of failure modes and stability of multi-level retaining structure in deepexcavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 919-922. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2173.htm

    [7]

    ZHENG G, NIE D, DIAO Y, et al. Numerical and experimental study of multi-bench retained excavations[J]. Geomechanics and Engineering, 2017, 13(5): 715-742.

    [8] 郑刚, 聂东清, 刁钰, 等. 基坑多级支护破坏模式研究[J]. 岩土力学, 2017, 38(增刊1): 313-322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1047.htm

    ZHENG Gang, NIE Dong-qing, DIAO Yu, et al. Research on failure mode of multi-stage foundation pit support[J]. Rock and Soil Mechanics, 2017, 38(S1): 313-322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1047.htm

    [9] 聂东清. 基坑梯级支护相互作用机理及稳定性研究[D]. 天津: 天津大学, 2017.

    NIE Dong-qing. Study on Interaction Mechanism and Stability of Foundation Pit Cascade Support[D]. Tianjin: Tianjin University, 2017. (in Chinese)

    [10] 郑刚, 聂东清, 程雪松, 等. 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39(5): 784-794. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705003.htm

    ZHENG Gang, NIE Dong-qing, CHENG Xue-song, et al. Research on model test of graded foundation pit support[J]. Journal of Geotechnical Engineering, 2017, 39(5): 784-794. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201705003.htm

    [11]

    MAEDA T, SHIMADA Y, TAKAHASHI S, et al. Design and construction of inclined-braceless excavation support applicable to deep excavation[C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, 2013, Paris.

    [12]

    SEO M, IM J, KIM C, et al. Study on the applicability of a retaining wall using batter piles in clay[J]. Canadian Geotechnical Journal, 2016, 53(8): 1195-1212. doi: 10.1139/cgj-2014-0264

    [13]

    JELDES I A, DRUMM E C, BENNETT R M, et al. Piling framed concrete retaining wall: design pressures and stability evaluation[J]. Practice Periodical On Structural Design and Construction, 2015, 20(UNSP 040140413).

    [14]

    ZHENG G, WANG Y P, ZHANG P, et al. Performances and working mechanisms of inclined retaining structures for deep excavations[J]. Advances in Civil Engineering, 2020: 1-18.

    [15] 郑刚, 白若虚. 倾斜单排桩在水平荷载作用下的性状研究[J]. 岩土工程学报, 2010, 32(增刊1): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1009.htm

    ZHENG Gang, BAI Ruo-xu. Research on the behavior of inclined single row pile under horizontal load[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1009.htm

    [16] 徐源, 郑刚, 路平. 前排桩倾斜的双排桩在水平荷载下的性状研究[J]. 岩土工程学报, 2010, 32(增刊1): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1019.htm

    XU Yuan, ZHENG Gang, LU Ping. Behaviors of double-row contiguous retaining piles with raking front-row piles under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2010S1019.htm

    [17] 郭建芝, 曹华先. 斜桩挡土支护深基坑[J]. 广州建筑, 1997(2): 38-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GZJZ199702007.htm

    GUO Jian-zhi, CAO Hua-xian. Inclined pile retaining and supporting deep foundation pit[J]. Guangzhou Architecture, 1997(2): 38-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZJZ199702007.htm

    [18] 李珍, 葛建斌, 周春儿. 多排(斜) 桩深基坑支护结构数模分析[J]. 岩土工程界, 2009, 12(3): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200903025.htm

    LI Zhen, GE Jian-bin, ZHOU Chun-er. Numerical model analysis of multi-row (inclined) pile deep foundation pit supporting structure[J]. Geotechnical Engineering, 2009, 12(3): 34-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS200903025.htm

    [19]

    ALTAEE A, FENLLENIUS B H. Physical modeling in sand[J]. Canadian Geotechnical Journal, 1994, 31: 420-431.

    [20]

    CHENG X S, ZHENG G, DIAO Y, et al. Experimental study of the progressive collapse mechanism of excavations retained by cantilever piles[J]. Canadian Geotechnical Journal, 2017, 54(4): 574-587.

图(19)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 网络出版日期:  2022-12-02
  • 刊出日期:  2021-08-31

目录

    /

    返回文章
    返回