Prediction of permeability of clay by modified Kozeny-Carman equation
-
摘要: Kozeny-Carman方程具有明确的物理意义被广泛用于粗粒土渗透系数的计算。为了提高其预估黏土渗透系数的准确度,首先建立等径球形颗粒理论模型,量化结合水占据总孔隙的份额,计算结果表明黏土颗粒间的孔隙几乎都被结合水占据,渗透性受到了极大的影响。然后利用界限含水率与结合水含量的关系,得到了黏土液限含水率推求有效孔隙比的计算公式,对常用的Kozeny-Carman方程进行修正。最后借助热失重试验测算出合肥黏土中结合水质量占液限的比例系数α0选取合肥原状黏土的相关物理参数,分别代入未修正和修正后的Kozeny-Carman方程中,将得到的渗透系数计算值与室内试验的实测值进行对比,发现经修正的Kozeny-Carman方程能较为准确地预估黏土渗透系数,具有一定的实用性。
-
关键词:
- 饱和黏土 /
- 等径球形颗粒理论模型 /
- 有效孔隙比 /
- 界限含水率 /
- 热重分析试验 /
- Kozeny-Carman方程
Abstract: The Kozeny-Carman equation has definite physical meaning, and can be widely used in calculating the permeability coefficient of sand.In order to improve the accuracy of using the conventional Kozeny-Carman equation to predict the permeability coefficient for saturated clay, firstly, the theoretical model for equal spherical particle is established, quantifying the share of absorbed water film occupied total pore space, so the permeability is greatly affected.According to the relationship between Atterberg limits and content of absorbed water film, the formula for calculating the efficient void ratio is derivated by the liquid limit.Then, the conventional Kozeny-Carman equation is modified.Finally, the proportion coefficient of absorbed water quality to liquid limit in Hefei clay is calculated by thermal gravimetric tests.Substituting the relevant physical parameters of Hefei clay into the unmodified and modified Kozeny-Carman equation, by comparing the calculated permeability coefficient with the measured value of laboratory tests, the results show that the modified Kozeny-Carman equation can be more accurate for estimating the permeability coefficient of clay. -
-
表 1 热重分析结果
Table 1 Results of thermal gravimetric tests
试样编号 自由水失重区间/℃ 自由水/% 弱结合水失重区间/℃ 弱结合水/% 强结合水失重区间/℃ 强结合水/% HF-8 RT~55.59 3.08 55.59~115.59 18.83 115.59~248.59 2.46 HF-23 RT~58.45 3.97 58.45~105.24 24.70 105.24~249.57 3.23 表 2 合肥黏土的土工指标
Table 2 Properties of Hefei clay
试样编号 相对质量密度GS 液限wL/% 天然孔隙比e 渗透系数k/(10-8 cm·s-1) HF-4 2.64 38.7 0.884 1.13 HF-6 2.69 35.9 0.964 1.55 HF-8 2.68 32.2 0.996 9.35 HF-9 2.55 42.0 0.981 5.72 HF-11 2.66 35.6 0.915 5.37 HF-14 2.52 41.9 0.933 1.95 HF-23 2.50 50.3 0.962 0.885 表 3 合肥黏土渗透系数计算结果
Table 3 Calculated results of permeability coefficient of Hefei clay
试样编号 有效孔隙比eu 未修正渗透系数/(10-6) 修正渗透系数/(10-9) 实测渗透系数/(10-8) HF-4 0.141 1.27 8.480 1.130 HF-6 0.261 1.28 39.800 1.550 HF-8 0.368 1.72 127.00 9.350 HF-9 0.202 1.65 23.800 5.720 HF-11 0.226 1.39 32.700 5.370 HF-14 0.165 1.46 13.400 1.950 HF-23 0.047 1.28 0.282 0.885 -
[1] 谷任国, 房营光. 极细颗粒黏土渗流离子效应的试验研究[J]. 岩土力学, 2009, 30(6): 1595-1598. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906011.htm GU Ren-guo, FANG Ying-guang. Experiment study on the ion effects on fine grained soil seepage[J]. Rock and Soil Mechanics, 2009, 30(6): 1595-1598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200906011.htm
[2] SINGH P N, WALLENDER W W. Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 829-836. doi: 10.1061/(ASCE)1090-0241(2008)134:6(829)
[3] 刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200908016.htm LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al. Experimental study of ionic soil stabilizer-improves expansive soil[J]. Rock and Soil Mechanics, 2009, 30(8): 2286-2291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200908016.htm
[4] 王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-947. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm WANG Tie-hang, LI Yan-long, SU Li-jun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-947. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405026.htm
[5] REDDI L N, THANGAVADIVELU S. Representation of compacted clay minifabric using random networks[J]. Journal of GeotechnicalEngineering, 1996, 122(11): 906-913.
[6] 何俊, 施建勇. 膨润土中饱和渗透系数的计算[J]. 岩石力学与工程学报, 2007, 26(增刊2): 3920-3925. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2047.htm He Jun, Shi Jian-yong. Calculation of satureated permeability ofbentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 3920-3925. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2007S2047.htm
[7] 梁健伟, 房营光. 极细颗粒黏土渗流特性试验研究[J]. 岩石力学与工程学报, 2010, 29(6): 1222-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm Liang Jian-wei, Fang Ying-guang. Experimental study of seepage characteristics of tiny-particle clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1222-1230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201006019.htm
[8] 崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006026.htm CUI De-shan, XIANG Wei1, CAO Li-jing, et al. Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201006026.htm
[9] CARMAN P C. Fluid flow through granular beds[J]. Trans Inst Chem Eng, 1937, 75(1): 150-166.
[10] CARMAN P C. Permeability of saturated sands, soils and clays[J]. Agric Sci, 1939, 29(2): 263-273.
[11] 党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, etal. Researchingclayeyempirical formula of permeability coefficient based on the theory of effective porosity ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909-1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
[12] 王平全. 黏土表面结合水定量分析及水合机制研究[D]. 南充: 西南石油学院, 2001. WANG Ping-quan. The Study for Quantitative Analysis of Water Absorbed on Clays and Their Hydration Mechanism[D]. Nanchong: Southwest Petroleum Institute, 2001. (in Chinese)