• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

细粒迁移及组构变化对黏土渗透性影响的试验研究

杨德欢, 韦昌富, 颜荣涛, 汤沁, 刘莉

杨德欢, 韦昌富, 颜荣涛, 汤沁, 刘莉. 细粒迁移及组构变化对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2019, 41(11): 2009-2017. DOI: 10.11779/CJGE201911005
引用本文: 杨德欢, 韦昌富, 颜荣涛, 汤沁, 刘莉. 细粒迁移及组构变化对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2019, 41(11): 2009-2017. DOI: 10.11779/CJGE201911005
YANG De-huan, WEI Chang-fu, YAN Rong-tao, TANG Qin, LIU Li. Experimental study on effects of fine particle migration and fabric change on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2009-2017. DOI: 10.11779/CJGE201911005
Citation: YANG De-huan, WEI Chang-fu, YAN Rong-tao, TANG Qin, LIU Li. Experimental study on effects of fine particle migration and fabric change on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2009-2017. DOI: 10.11779/CJGE201911005

细粒迁移及组构变化对黏土渗透性影响的试验研究  English Version

基金项目: 国家自然科学基金项目(41572293,11562007,11372078); 广西自然科学基金项目(2017GXNSFAA198215)
详细信息
    作者简介:

    杨德欢(1990— ),男,博士研究生,主要从事环境岩土工程方面研究。E-mail: ydh9008@126.com。

    通讯作者:

    韦昌富,E-mail:cfwei@whrsm.ac.cn

  • 中图分类号: TU411

Experimental study on effects of fine particle migration and fabric change on permeability of clay

  • 摘要: 为进一步探究水化学环境下土体渗透性的变化规律及作用机理,对饱和重塑压实黏土样在不同水化学条件及渗流路径下进行了一系列变水头渗透试验,分析了不同浓度的NaCl溶液在不同渗流路径下对饱和黏土渗透性的影响。结果表明:不同干密度试样的渗透性随浓度增加展现出较大的差异,干密度为1.40 g/cm3时,渗透系数呈先升后降,而干密度为1.50 g/cm3时,渗透系数不断降低;逆转渗流方向,试样渗透系数发生突变;孔隙盐溶液浓度周期性变化,试样渗透性不可逆。基于核磁共振(NMR)分析技术,测试了土体内部孔隙结构分布随孔隙盐溶液浓度的变化。最后基于上述试验结果从细粒迁移产生的孔隙堵塞效应和组构改变引起的孔隙封闭效应两个方面,解释了孔隙盐溶液浓度变化对黏土渗透性的影响。
    Abstract: The permeability of soils is of importance in the engineering design and construction. For the clayey soils, the change law and mechanism of permeability in hydrochemical environment are not clear due to the complex physicochemical interactions between the clay minerals and pore water. To explore the effects of salt solution on the permeability, a series of variable head permeability tests are performed on the remolded clay samples. The results show that the variation of the permeability with the concentration depends upon the dry density. For the samples with the dry density of 1.4 g/cm3, the permeability increases firstly and then decreases as the concentration increases. However, the permeability of samples with the dry density of 1.5 g/cm3 decreases continuously. When the direction of seepage is reversed, the permeability of the samples changes drastically. The change of permeability is irreversible under the periodical variation of the pore water concentration. In addition, the measurement of the variation of pore structure in the soils with the salt solution concentration is conducted by the nuclear magnetic resonance (NMR) analysis. Based on the above experimental results, the effects of salt solution concentration on the clay permeability are explained from two aspects: pore plugging effects caused by fine particle migration and pore sealing effects caused by fabric change.
  • [1] MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. New York: Wiley, 2005.
    [2] 朱伟, 徐浩青, 王升位, 等. CaCl2溶液对不同黏土基防渗墙渗透性的影响[J]. 岩土力学, 2016, 37(5): 1224-1230.
    (ZHU Wei, XU Hao-qing, WANG Sheng-wei, et al.Influence of CaCl2 solution on the permeability of different clay-based cutoff walls[J]. Rock and Soil Mechanics, 2016, 37(5): 1224-1230. (in Chinese))
    [3] 杨玉玲, 杜延军, 范日东, 等. 膨润土系隔离墙材料渗透特性研究综述[J]. 岩土工程学报, 2015, 37(增刊2): 210-216.
    (YANG Yu-ling, DU Yan-jun, FAN Ri-dong, et al.Advances in permeability for bentonite-based hydraulic containment barriers[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S2): 210-216. (in Chinese))
    [4] 汤文, 姚志宾, 李邵军, 等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学, 2016, 37(10): 2885-2892.
    (TANG Wen, YAO Zhi-bin, LI Shao-jun, et al.Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: an experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885-2892. (in Chinese))
    [5] GOLDENBERG L C, MAGARITZ M, MANDEL S.Experimental investigation on irreversible changes of hydraulic conductivity on the seawater-freshwater interface in coastal aquifers[J]. Water Resources Research, 1983, 19(1): 77-85.
    [6] KHILAR K C, FOGLER H S.The existence of a critical salt concentration for particle release[J]. Journal of Colloid & Interface Science, 1984, 101(1): 214-224.
    [7] GOLDENBERG L C, MAGARITZ M, AMIEL A J, et al.Changes in hydraulic conductivity of laboratory sand-clay mixtures caused by a seawater-freshwater interface[J]. Journal of Hydrology, 1984, 70(1): 329-336.
    [8] JONES JR F O. Influence of chemical composition of water on clay blocking of permeability[J]. Journal of Petroleum Technology, 1964, 16(4): 441-446.
    [9] KHILAR K C, FOGLER H S.Water sensitivity of sandstones[J]. Society of Petroleum Engineers Journal, 1983, 23(1): 55-64.
    [10] QUIRK J P, SCHOFIELD R K.The effect of electrolyte concentration on soil permeability[J]. Journal of Soil Science, 1955, 6(2): 163-178.
    [11] KIA S F, FOGLER H S, REED M G.Effect of salt composition on clay release in Berea sandstones[J]. SPE Production Engineering, 1987, 2(4): 277-283.
    [12] XIAO M.Modeling fine particles clogging in filters and drainage layers[D]. Kansas: Kansas State University, 2001.
    [13] 梁健伟, 房营光, 谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. 岩土力学, 2010, 31(10): 3043-3050.
    (LIANG Jian-wei, FANG Ying-guang, GU Ren-guo.Analysis of microelectric field effect of seepage in tiny-particle clay[J]. Rock and Soil Mechanics, 2010, 31(10): 3043-3050. (in Chinese))
    [14] SRIDHARAN A, CHOUDHURY D.Computation of hydraulic conductivity of montmorillonitic clays by diffuse double layer theory[J]. International Journal of Geotechnical Engineering, 2008, 2(1): 1-10.
    [15] SHARIATMADARI N, SALAMI M, KARIMPOUR F M.Effect of inorganic salt solutions on some geotechnical properties of soil-bentonite mixtures as barriers[J]. International Journal of Civil Engineering, 2011, 9(2): 103-110.
    [16] STUDDS P G, STEWART D I, COUSENS T W.The effects of salt solutions on the properties of bentonite-sand mixtures[J]. Clay Minerals, 1998, 33(4): 651-660.
    [17] YILMAZ G, YETIMOGLU T, ARASAN S.Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions[J]. Waste Management & Research, 2008, 26(5): 464-473.
    [18] 邓友生, 何平, 周成林, 等. 含盐土渗透系数变化特征的试验研究[J]. 冰川冻土, 2006, 28(5): 772-774.
    (DENG You-sheng, HE Ping, ZHOU Cheng-lin, et al.Experimental study of permeability coefficient of saline soils[J]. Journal of Glaciology and Geocryology, 2006, 28(5): 772-774. (in Chinese))
    [19] 谌文武, 吕海敏, 吴国鹏, 等. 盐分对遗址土体渗透性及孔径的影响[J]. 中南大学学报(自然科学版), 2016, 47(8): 2747-2751.
    (CHEN Wen-wu, LÜ Hai-min, WU Guo-peng, et al.Influence of salt in site soils on permeability and pore diameter[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2747-2751. (in Chinese))
    [20] WANG Y H, SIU W K.Structure characteristics and mechanical properties of Kaolinite soils: I surface charges and structural characterizations[J]. Canadian Geotechnical Journal, 2006, 43(6): 587-600.
    [21] CHEN J, ANANDARAJAH A.Influence of pore fluid composition on volume of sediments in Kaolinite suspensions[J]. Clays and Clay Minerals, 1998, 46(2): 145-152.
    [22] 杨德欢. 孔隙水溶液对高岭土变形特性的影响机理[D]. 桂林: 桂林理工大学, 2016.
    (YANG De-huan.Influencing mechanism of pore water chemistry on volume change behavior of Kaolinite[D]. Guilin: Guilin University of Technology, 2016. (in Chinese))
    [23] SL237—1999 土工试验规程[S]. 北京: 中国水利水电出版社, 1999.
    (SL237—1999 Specification of soil test[S]. Beijing: China Water & Power Press, 1999. (in Chinese))
    [24] 傅鑫晖, 韦昌富, 颜荣涛, 等. 非饱和红黏土的强度特性研究[J]. 岩土力学, 2013, 32(增刊2): 204-209.
    (FU Xin-hui, WEI Chang-fu, YAN Rong-tao, et al.Research on strength characteristics of unsaturated red clay[J]. Rock and Soil Mechanics, 2013, 32(S2): 204-209. (in Chinese))
    [25] MUNGAN N.Permeability reduction through changes in pH and salinity[J]. Journal of Petroleum Technology, 1965, 17(12): 1449-1453.
    [26] GKAY D H, REX R W.Formation damage in sandstones caused by clay dispersion and migration[C]// Clays and Clay Minerals: Proceedings of the Fourteenth National Conference. 1966: 355-366.
    [27] COATES G R, XIAO L L, PRAMMER M G.NMR logging principles and application[M]. Houston: Halliburton Energy Services Publication, 1999.
    [28] MCNEAL B L, COLEMAN N T.Effect of solution composition on soil hydraulic conductivity[J]. Soil Science Society of America Journal, 1966, 30(3): 308-312.
    [29] 李广信. 论土骨架与渗透力[J]. 岩土工程学报, 2016, 38(8): 1522-1528.
    (LI Guang-xin.On soil skeleton and seepage force[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1522-1528. (in Chinese))
    [30] 田慧会, 韦昌富, 颜荣涛, 等. 粉土中二氧化碳水合物分解过程的核磁试验研究[J]. 中国科学: 物理学力学天文学, 2019, 49: 034615.
    (TIAN Hui-hui, WEI Chang-fu, YAN Rong-tao, et al.A NMR-based analysis of carbon dioxide hydrate dissociation process in silt[J]. Scientia Sinica: Physica, Mechanica &Astronomica, 2019, 49: 034615. (in Chinese))
    [31] LI X, ZHANG L M.Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129-141.
    [32] ANANDARAJAH A.Mechanism controlling permeability change in clays due to changes in pore fluid[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(2): 163-172.
    [33] SUZUKI S, PRAYONGPHAN S, ICHIKAWA Y, et al.In situ observations of the swelling of bentonite aggregates in NaCl solution[J]. Applied Clay Science, 2005, 29(2): 89-98.
    [34] MONTORO M A, FRANCISCA F M.Soil permeability controlled by particle-fluid interaction[J]. Geotechnical & Geological Engineering, 2010, 28(6): 851-864.
    [35] 林国庆. 咸淡水过渡带渗透性突变的机理与效应研究[D]. 青岛: 中国海洋大学, 2006.
    (LIN Guo-qing.Mechanism and application of abrupt changes of hydraulic conductivity on the seawater-freshwater interface[D]. Qingdao: Ocean University of China, 2006. (in Chinese))
    [36] 宋林辉, 黄强, 闫迪, 等. 水力梯度对黏土渗透性影响的试验研究[J]. 岩土工程学报, 2018, 40(9): 1635-1641.
    (SONG Lin-hui, HUANG Qiang, YAN Di, et al.Experimental study on effect of hydraulic gradient on permeability of clay[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1635-1641. (in Chinese))
    [37] SHARMA M M, CHAMOUN H, SARMA D S H S R, et al. Factors controlling the hydrodynamic detachment of particles from surfaces[J]. Journal of Colloid and Interface Science, 1992, 149(1): 121-134.
    [38] YU H H, SUN D A, TIAN H H.NMR-based analysis of shear strength of weakly expansive clay in sodium chloride solution[J]. Magnetic Resonance Imaging, 2019, 58: 6-13.
    [39] SRIDHARAN A.Fourth IGS-Ferroco Terzaghi Oration: 2014[J]. Indian Geotechnical Journal, 2014, 44(4): 371-399.
  • 期刊类型引用(6)

    1. 方华强,丁选明,张灵芝,李一夫,王红,辛义文,彭宇,李铮. 基于粒子图像测速技术的纤维改性珊瑚泥面层龟裂模型试验研究. 岩土力学. 2025(02): 368-380 . 百度学术
    2. 章青,刘攀勇,顾鑫,乔延赫. 土壤干缩开裂和卷曲分析的数值模型与若干进展Ⅰ:基本方程与网格类数值方法. 水利学报. 2025(01): 42-55 . 百度学术
    3. 郭鸿,鲁玉妍,李文阳,邹虎金,张彤川,黄芙蓉. 生态纤维改良砂质黏土干缩裂隙试验研究. 水利水运工程学报. 2025(02): 121-127 . 百度学术
    4. ZHANG Hailong,ZHU Haili,WU Yuechen,XU Pengkai,HONG Chenze,LIU Yabin,LI Guorong,HU Xiasong. Mechanical properties of surface soil in alpine meadow and its relationship with soil cracking in Qinghai Province, China. Journal of Arid Land. 2025(05): 644-663 . 必应学术
    5. 吴庚,于怀昌,张中印,梁艳坤,王闯,吕寒雪. 干湿循环作用下高压实膨胀土及改性土裂隙演化规律及机理研究. 水利水电技术(中英文). 2024(S1): 370-377 . 百度学术
    6. 尚瑞华,韩鹏举,谷瑞芳,程驰,吴雅娟,刘伟伟. 基于Origin的土遗址防雨水侵蚀调控机理研究——以晋阳古城西城墙为例. 太原理工大学学报. 2024(04): 686-695 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  319
  • HTML全文浏览量:  22
  • PDF下载量:  231
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-04-22
  • 发布日期:  2019-11-24

目录

    /

    返回文章
    返回