• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

膨胀土干燥过程中收缩应力的测试与分析

曾浩, 唐朝生, 刘昌黎, 林銮, 徐金鉴, 王东伟, 施斌

曾浩, 唐朝生, 刘昌黎, 林銮, 徐金鉴, 王东伟, 施斌. 膨胀土干燥过程中收缩应力的测试与分析[J]. 岩土工程学报, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015
引用本文: 曾浩, 唐朝生, 刘昌黎, 林銮, 徐金鉴, 王东伟, 施斌. 膨胀土干燥过程中收缩应力的测试与分析[J]. 岩土工程学报, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015
ZENG Hao, TANG Chao-sheng, LIU Chang-Li, LIN Luan, XU Jin-Jian, WANG Dong-wei, SHI Bin. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015
Citation: ZENG Hao, TANG Chao-sheng, LIU Chang-Li, LIN Luan, XU Jin-Jian, WANG Dong-wei, SHI Bin. Measurement and analysis of shrinkage stress of expansive soils during drying process[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 717-725. DOI: 10.11779/CJGE201904015

膨胀土干燥过程中收缩应力的测试与分析  English Version

基金项目: 国家自然科学基金项目(41572246,41772280); 优秀青年科学基金项目(41322019); 国家自然科学基金重点项目(41230636); 江苏省自然科学基金项目(BK20171228,BK20170394); 中央高校基本科研业务费专项资金项目
详细信息
    作者简介:

    曾浩(1995- ),男,江西玉山人,硕士研究生,主要从事环境岩土工程和工程地质方面的研究工作。E-mail: MG1729094@smail.nju.edu.cn。

    通讯作者:

    唐朝生,E-mail:tangchaosheng@nju.edu.cn

  • 中图分类号: TU431

Measurement and analysis of shrinkage stress of expansive soils during drying process

  • 摘要: 膨胀土在膨胀过程中会产生膨胀应力,收缩过程中亦会产生收缩应力。探究膨胀土在干燥过程中收缩应力的变化规律对理解收缩变形机制有重要意义。为了掌握膨胀土在干燥过程中内部收缩应力与含水率及吸力之间的关系,在控制相对湿度条件下开展了一系列干燥试验。试验中共配置了3组初始饱和的泥浆样,将试样分别置于装有不同过饱和盐溶液的保湿器中,并在恒温20℃的条件下进行干燥,实时记录试样含水率的变化。此外,在试验过程中,通过在试样内部植入微型压力传感器来测定土体收缩应力随干燥时间的变化。试验结果表明:①在不同相对湿度条件下,土体内水分蒸发特性不同,如相对湿度越小,土体水分蒸发的越快,且蒸发结束后,土体残余含水率越低;②干燥过程中,土体内收缩应力呈现明显的阶段性变化特征。干燥前期,收缩应力随时间的推移增加缓慢,但当达到临界时间点ts或临界含水率ws以后,收缩应力随着干燥的持续开始急剧增加,并且蒸发速率越大,tsws越小;③干燥结束后,土体内部收缩应力与环境相对湿度呈负相关,与对应吸力呈正相关。
    Abstract: During the expansion process, the expansive soils will produce expansion stress and vice versa. Therefore, it is very significant to explore the change of the shrinkage stress of the expansive soils during drying. In order to investigate the relationship among internal shrinkage stress of expansive soils, water content and suction during the drying shrinkage process, a series of desiccation tests are conducted under different relative humidity conditions. In the tests, three slurry samples of the initial saturation are prepared and respectively placed in humidifiers with different over-saturated salt solutions and then dried at a constant temperature of 20℃. The change of water content is recorded in real-time. Additionally, the micropressure sensors are embedded in these samples to measure the change of the internal shrinkage stress during drying. The results show that: (1) The evaporation characteristics of soil water are different under different relative humidity conditions. For example, the smaller the relative humidity, the faster the soil water evaporates, and the lower the residual water content of the soils. (2) During the process of drying, the internal shrinkage stress in the soils shows obviously phasic variation. The shrinkage stress increase slowly in the early drying and then begins to increase sharply with drying when the time or soil water content reaches the critical value ws or ts, which decreases with the increase of evaporation rate. (3) After the evaporation, the shrinkage stress has a negative correlation with the environment relative humidity and has a positive correlation with the corresponding suction.
  • [1] 曲永新, 张永双, 冯玉勇, 等. 中国膨胀土粘土矿物组成的定量研究[J]. 工程地质学报, 2002(增刊1): 416-422.
    (QU Yong-xin, ZHANG Yong-shuang, FENG Yu-yong, et al.Quantitative study on the clay 1viineral coiviposition of ex-pansive soils in china[J]. Journal of Engineering Geology, 2002(S1): 416-422. (in Chinese))
    [2] 包承纲. 非饱和土的性状及膨胀土边坡稳定问题[J]. 岩土工程学报, 2004, 26(1): 1-15.
    (BAO Cheng-gang.Behavior of unsaturated soil and stability of expansive soil slope[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(1): 1-15. (in Chinese))
    [3] 唐朝生, 崔玉军, Anh-Minh Tang,等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279.
    ( TANG Chao-sheng, CUI Yu-jun, TANG Anh-minh, et al.Volumetric shrinkage characteristics soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese))
    [4] TANG C, SHI B, LIU C, et al.Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils[J]. Engineering Geology, 2008, 101(3): 204-217.
    [5] MORRIS P H, GRAHAM J, WILLIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277.
    [6] NELSON J D, MILLER D J.Expansive soils: problems and practice in foundation and pavement engineering[M]. New York: John Wiley, 1992.
    [7] 徐彬, 殷宗泽, 刘述丽. 膨胀土强度影响因素与规律的试验研究[J]. 岩土力学, 2011, 32(1): 44-50.
    (XU Bin, YIN Zong-ze, LIU Shu-li.Experimental study of factors influencing expansive soil strength[J]. Rock and Soil Mechanics, 2011, 32(1): 44-50. (in Chinese))
    [8] PUPPALA A J, WEJRUNGSIKUL T, PULJAN V, et al.Measurements of shrinkage induced pressure (SIP) in unsaturated expansive clays[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2012, 43(1): 40-47.
    [9] CHEN F H.Foundations on expansive soils[M]. Amsterdam: Elsevier, 2012.
    [10] ALDAOOD A, BOUASKER M, AL-MUKHTAR M.Impact of wetting-drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils[J]. Engineering Geology, 2014, 174(1): 11-21.
    [11] RAMANA K V.Expansive soils: problems and practice in foundation and pavement engineering[J]. Engineering Geology, 1993, 35(1/2): 136-138.
    [12] LLOYD-HUGHES B.The long-rangepredictability of Europeandrought[D]. London: University of London, 2002.
    [13] HU L B, PÉRON H, HUECKEL T, et al. Desiccation shrinkage of non‐clayey soils: multiphysics mechanisms and a microstructural model[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2013, 37(12): 1761-1781.
    [14] TRIPATHY S, RAO K S S. Cyclic swell-shrink behaviour of a compacted expansive soil[J]. Geotechnical & Geological Engineering, 2009, 27(1): 89-103.
    [15] PENG X, HORN R.Modeling soil shrinkage curve across a wide range of soil types[J]. Soil Science Society of America Journal, 2005, 69(3): 584-592.
    [16] ALONSO E E, ROMERO E, HOFFMANN C, et al.Expansive bentonite-sand mixtures in cyclic controlled- suction drying and wetting[J]. Engineering Geology, 2005, 81(3): 213-226.
    [17] 唐朝生, 施斌. 干湿循环过程中膨胀土的胀缩变形特征[J]. 岩土工程学报, 2011, 33(9): 1376-1384.
    (TANG Chao-sheng, SHI Bin.Swelling and shrinkage behaviour of expansive soil during wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1376-1384. (in Chinese))
    [18] BRONSWIJK J J B. Relation between vertical soil movements and water-content changes in cracking clays[J]. Soil Science Society of America Journal, 1991, 55(5): 1220-1226.
    [19] BRAUDEAU E, COSTANTINI J M, BELLIER G, et al.New device and method for soil shrinkage curve measurement and characterization[J]. Soil Science Society of America Journal, 1999, 63(3): 525-535.
    [20] BOIVIN P, GARNIER P, TESSIER D.Relationship between clay content, clay type, and shrinkage properties of soil samples[J]. Soil Science Society of America Journal, 2004, 68(4): 1145-1153.
    [21] ABOU NAJM M, MOHTAR R H, WEISS J, et al. Assessing internal stress evolution in unsaturated soils[J]. Water Resources Research, 2010, 45(5): W00C11.
    [22] 缪林昌, 仲晓晨, 殷宗泽. 膨胀土的强度与含水量的关系[J]. 岩土力学, 1999, 20(2): 71-75.
    (MIAO Lin-chang, ZHONG Xiao-chen, YIN Zon-ze.The relationship between strength and wate content of expansive soil[J]. Rock and Soil Mechanics, 1999, 20(2): 71-75. (in Chinese) )
    [23] 唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20(5): 663-673.
    (TANG Chao-sheng, SHI Bin, LIU Chun.Study on desiccation cracking behaviour of expansvie soil[J]. Journal of Engineering Geology, 2012, 20(5): 663-673.(in Chinese))
    [24] 栾茂田, 汪东林, 杨庆, 等. 非饱和重塑土的干燥收缩试验研究[J]. 岩土工程学报, 2008, 30(1): 118-122.
    (LUAN Mao-tian, WANG Dong-lin, YANG Qing, et al.Experimental study on dryingshrinkage of unsaturated compacted soils[J]. Chinese Journal of Geotechnical Engineering Journal, 2008, 30(1): 118-122. (in Chinese))
    [25] BRONSWIJK J J B. Modeling of water balance, cracking and subsidence of clay soils[J]. Journal of Hydrology, 1988, 97(3/4): 199-212.
    [26] PERON H, HUECKEL T, LALOUI L, et al.Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification[J]. Canadian Geotechnical Journal, 2009, 46(10): 1177-1201.
    [27] LU N, DONG Y.Correlation between soil-shrinkage curve and water-retention characteristics[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2017, 143(9): 0001741.
    [28] 赵成刚, 白冰. 土力学原理-修订本[M]. 北京: 清华大学出版社, 2009.
    (ZHAO Cheng-gang, BAI Bing.Soil mechanics principle-revised edition[M]. Beijing: Tsinghua University Press, 2009. (in Chinese) )
    [29] LU N, LIKOS W J.Unsaturated soil mechanics[M]. New York: J Wiley, 2004.
    [30] TANG A M, CUI Y J.Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay[J]. Canadian Geotechnical Journal, 2005, 42(1): 287-296.
    [31] 吴宏伟, 陈锐. 非饱和土试验中的先进吸力控制技术[J]. 岩土工程学报, 2006, 28(2): 123-128.
    (NG C W W, CHEN Rui. Advanced suction control techniques for testing unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 123-128. (in Chinese))
    [32] 叶为民, 唐益群, 崔玉军. 室内吸力量测与上海软土土水特征[J]. 岩土工程学报, 2005, 27(3): 347-349.
    (YE Wei-ming, TANG Yi-qun, CUI Yu-jun.Measurement of soil suction in laboratory and soil-water characteristics of Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(3): 347-349. (in Chinese))
    [33] 唐朝生, 施斌, 顾凯. 土中水分的蒸发过程试验研究[J]. 工程地质学报, 2011, 19(6): 875-881.
    (TANG Chao-sheng, SHI Bin, GU Kai.Experimental investigation on evaporation process of water in soil during drying[J]. Journal of Engineering Geology, 2011, 19(6): 875-881. (in Chinese))
    [34] HILLEL D.Introduction to soil physical[M]. New York: Academic Press, 1982.
    [35] SWARBRICK G E, FELL R.Modeling desiccating behavior of mine tailings[J]. Journal of Geotechnical Engineering, 1992, 118(4): 540-557.
    [36] FREDLUND D G, RAHARDJO H.Soil mechanics for unsaturated soils[M]. New York: Wiley, 1993.
    [37] WILSON G W, FREDLUND D G., BARBOUR S L.The effect of soil suction on evaporative fluxes from soil surfaces[J]. Canadian Geotechnical Journal, 1997, 34: 145-155
    [38] BISHOP A W, WEBB D C, LEWIN P I.Undisturbed samples of London clay from Ashford common shaft: strength/effective stress relationships[J]. Géotechnique, 1965, 15: 1-31.
    [39] SCHERER G W.Theory of drying[J]. Journal of the American Ceramic Society, 2010, 73(1): 3-14.
  • 期刊类型引用(40)

    1. 黄明华,钟煜轩,陆锦斌,王克平. 基于非连续地基梁模型的基坑开挖诱发下卧盾构隧道变形分析. 岩土力学. 2025(02): 492-504 . 百度学术
    2. 宋博文,秦会来,王蓉,翟雷,王龙,吕玺琳. 南京地区基于地铁隧道保护要求的基坑变形控制指标. 同济大学学报(自然科学版). 2025(04): 548-556 . 百度学术
    3. 周鼎文,韩磊,应宏伟,朱成伟,李慧慧. 分隔型基坑施工对邻近地层及隧道位移的影响. 浙江大学学报(工学版). 2025(05): 1072-1082 . 百度学术
    4. 韩晓. 上海紧邻地铁超大深基坑工程设计与实践. 岩土工程技术. 2024(01): 70-74 . 百度学术
    5. 魏纲,木志远,齐永洁,郭丙来,项鹏飞. 考虑地层损失的隔离桩对基坑旁侧盾构隧道变形保护研究. 岩土工程学报. 2024(03): 480-489 . 本站查看
    6. 李宇翔,张杰,严松宏,刘念武,沈晓伟. 富水软土区紧邻基坑工程的地铁隧道保护措施分析. 高校地质学报. 2024(05): 613-621 . 百度学术
    7. 毛家骅,刘明高,陈仁东,张园,陆平,张晨阳. 基坑开挖及降水作用下盾构隧道结构响应离心模型试验设计研究. 土木工程学报. 2024(S1): 184-189 . 百度学术
    8. 王如路,袁强,梁发云,王鲁杰. 道路填土引发软土地铁盾构隧道变形案例及整治技术. 岩土工程学报. 2023(01): 112-121 . 本站查看
    9. 陈仁朋,刘慕淳,孟凡衍,李忠超,吴怀娜,程红战. 基坑开挖旁侧盾构隧道结构横向受力与变形研究. 岩土工程学报. 2023(01): 24-32 . 本站查看
    10. 范磊,魏越. 十字换乘车站基坑开挖影响分析及变形控制研究. 建筑科学. 2023(03): 146-153 . 百度学术
    11. 马伟亮,李顺群,叶茂松,黄雄飞. 基坑开挖对邻近隧道变形影响的解析方法研究. 地下空间与工程学报. 2023(02): 446-455 . 百度学术
    12. 吴红斌. 软土地层中基坑开挖对邻近地铁隧道变形及周边地表沉降影响的数值模拟分析. 建筑结构. 2023(S1): 2823-2827 . 百度学术
    13. 马勤,张玉山. 深基坑开挖诱发邻近运营地铁隧道变形响应特征研究. 地基处理. 2023(05): 434-443 . 百度学术
    14. 吴梦琴,丁智,王震. 盾构隧道管片承载性能研究综述. 低温建筑技术. 2023(09): 58-62 . 百度学术
    15. 李奕彤,魏纲,木志远. 隔离桩对基坑外侧盾构隧道防护研究综述. 低温建筑技术. 2023(12): 110-115 . 百度学术
    16. 张莎莎,苏焰花,樊林,戴志仁. 基坑开挖对邻近既有盾构隧道的影响分析. 建筑科学与工程学报. 2022(01): 134-142 . 百度学术
    17. 曹利强,陈湘生,张顶立,苏栋. 隔离桩对隧道开挖诱发土体竖向位移牵制效应的理论分析. 岩土工程学报. 2022(05): 916-925 . 本站查看
    18. 张航飞. 基坑开挖与紧邻地铁隧道相互影响研究. 科技通报. 2022(06): 66-72 . 百度学术
    19. 张超,刘拯安,郎志雄,陈仁朋. 近接工程建设荷载的数字孪生试验方法. 土木工程学报. 2022(07): 121-128 . 百度学术
    20. 刘鑫菊,郑刚,周海祚,何晓佩,王恩钰,郭知一. 临近基坑开挖引起的隧道变形预测分析. 重庆大学学报. 2022(07): 37-44 . 百度学术
    21. 刘波,章定文,李建春. 基于多案例统计的基坑开挖引起侧方既有隧道变形预测公式及其工程应用. 岩土力学. 2022(S1): 501-512 . 百度学术
    22. 尹骥. 软土深基坑开挖对隧道影响分析及设计参数讨论. 地下空间与工程学报. 2022(S1): 173-178+186 . 百度学术
    23. 魏新江,马靖昊,汪海林,鲁梁梁. 基坑开挖对邻近盾构隧道竖井的影响研究现状. 低温建筑技术. 2022(06): 127-131 . 百度学术
    24. 傅志斌,涂序超,徐有娜. 非对称基坑开挖对邻近地铁隧道变形性分析. 洛阳理工学院学报(自然科学版). 2022(03): 11-16 . 百度学术
    25. 杨磊,黄钟晖,谢雄耀. 基于离心试验与数值模拟的圆砾地层深基坑弹性地基模式研究. 工程地质学报. 2022(04): 1203-1210 . 百度学术
    26. 曾力,杨景辉,李明宇,马朋辉,朱翔. 土岩组合地层基坑开挖对下卧隧道变形影响模拟分析. 沈阳建筑大学学报(自然科学版). 2022(05): 879-887 . 百度学术
    27. 夏曾银,潘军,盛鲁腾,程雪松,郑刚,冀叶涛,孟灵波. 注浆和隔离墙对基坑引发隧道变形的联合控制作用研究. 水利水电技术(中英文). 2022(09): 175-185 . 百度学术
    28. 郑镇跡,曹利强,苏栋,陈湘生. 隔离桩对隧道开挖引起沉降的控制效能分析. 深圳大学学报(理工版). 2022(06): 615-621 . 百度学术
    29. 赵平. 深基坑开挖影响的有限元模拟与监测. 安庆师范大学学报(自然科学版). 2022(04): 24-28+36 . 百度学术
    30. 黄盛锋,陈志波,谢永宁,郑金伙,邓煜晨. 紧邻隧道条件下基坑开挖变形破坏模式分析. 自然灾害学报. 2022(06): 181-190 . 百度学术
    31. 董艳彪. 管道顶进防护套管施工对既有高铁桥梁的影响. 山西建筑. 2021(17): 138-141+146 . 百度学术
    32. 文仁学. 抗拔桩+抗浮板加固体系在上跨盾构隧道基坑开挖中的应用分析. 路基工程. 2021(04): 188-193 . 百度学术
    33. 沈银斌,陈龙,周侃东,黄河. 基坑施工对临近既有地铁隧道变形的影响分析. 安徽建筑. 2021(10): 159-162 . 百度学术
    34. 陈仁朋,刘书伦,孟凡衍,叶俊能,朱斌. 软黏土地层基坑开挖对旁侧隧道影响离心模型试验研究. 岩土工程学报. 2020(06): 1132-1138 . 本站查看
    35. 张治国,蒋康明,王志伟,邢李,魏纲,丁智. 考虑Pasternak地基模型的基坑开挖诱发既有隧道纵向变形理论分析. 隧道建设(中英文). 2020(S1): 57-67 . 百度学术
    36. 徐晓兵,胡琦,曾理彬,王金昌,王哲. 隔离桩对干砂地基中基坑侧方隧道影响的模型试验研究. 岩石力学与工程学报. 2020(S1): 3015-3022 . 百度学术
    37. 张鑫海,魏纲,林心蓓. 考虑纵向变形影响的基坑下方盾构隧道横向受力变化研究. 岩石力学与工程学报. 2020(11): 2351-2364 . 百度学术
    38. 吴才德,赵豫鄂,成怡冲,郑翔,龚迪快,沈俊杰. 不同形式隔离桩对基坑外既有隧道的保护效果对比研究. 四川建筑科学研究. 2020(S1): 75-82 . 百度学术
    39. 魏焕卫,杨帆,罗威,奎耀,卢卓. 基坑开挖对旁侧既有隧道影响的模型试验研究. 山东建筑大学学报. 2020(06): 15-22 . 百度学术
    40. 刘庭金,林少群. 盾构隧道病害分析及上方架空轻质回填研究. 铁道工程学报. 2019(07): 64-69 . 百度学术

    其他类型引用(53)

计量
  • 文章访问数:  304
  • HTML全文浏览量:  12
  • PDF下载量:  245
  • 被引次数: 93
出版历程
  • 收稿日期:  2018-03-26
  • 发布日期:  2019-04-24

目录

    /

    返回文章
    返回