Utilization of activated steel slag to solidify/stabilize industrially heavy-metal contaminated soils
-
摘要: 针对钢渣基可持续型固化剂在工业重金属污染土固化稳定化的应用效果进行了试验研究,以重金属固定效率为评价标准,得到了磷酸盐活化钢渣的工艺参数。结果表明,磷酸二氢钾活化可以明显改善钢渣对重金属铅锌镉的固定效果。磷酸二氢钾和钢渣质量比为2%~4%时,通过湿法拌合、20℃风干制得的活化钢渣对重金属铅锌镉的固定效果最佳。并进一步以非活化钢渣作为对比,分析了活化钢渣固化铅锌镉污染土的环境安全及强度特性。结果表明,活化钢渣添加可以显著降低重金属铅锌镉的浸出浓度,提高污染土的pH值。活化钢渣的添加可以提高污染土的无侧限抗压强度,并随着固化剂的掺量的增加而增长;与未活化钢渣相比,钢渣的活化过程会削弱固化土的强度增加,而且固化剂掺加量越大削弱程度越大。Abstract: A systematic investigation on the solidification/stabilization effectiveness of industrially heavy-metal contaminated soils by a sustainable steel-slag-based binder (BOFS) is introduced. The activation method of the BOFS is explored, and the heavy-metal immobilization effectiveness is used as an evaluation standard. The results demonstrate that the activation of BOFS with monopotassium phosphate (MKP) can significantly improve the heavy metal immobilization effectiveness. The activated-BOFS (PAB) with a MKP/BOFS ratio of 2%~4% obtained from wet mixing and 20 °C drying is found to possess superior performance. Furthermore, the leaching and strength properties of the PAB-stabilized soils are investigated, and the original BOFS is selected as a control binder for comparison purposes. It is also found that the addition of PAB increases the pH of soils, but reduces the toxicity leaching concentration of Pb, Zn and Cd. Also, the addition of both the original BOFS and PAB increases the unconfined compressive strength (qu) of the stabilized soils, but the activation of BOFS induces a relatively weaker increase in qu. Overall, this study demonstrates that the sustainable PAB binder has positive effects on the immobilization of the heavy metals and strength increase of the stabilized soils.
-
[1] 刘松玉. 污染场地测试评价与处理技术[J].岩土工程学报, 2018, 40(1): 1-37.
(LIU Song-yu.Geotechnical investigation and remediation for industrial contaminated sites[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 1-37. (in Chinese))[2] DU Y J, JIANG N J, LIU S Y, et al.Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated kaolin[J]. Canadian Geotechnical Journal, 2013, 51(3): 289-302. [3] SHARMA H D, REDDY K R.Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M]. New York: Harper Collins Publishers, 2004. [4] SCRIVENER K L, KIRKPATRICK R J.Innovation in use and research on cementitious material[J]. Cement and Concrete Research, 2008, 38(2): 128-136. [5] DU Y J, WEI M L, REDDY K R, et al.New phosphate-based binder for stabilization of soils contaminated with heavy metals: Leaching, strength and microstructure characterization[J]. Journal of Environmental Management, 2014, 146: 179-188. [6] XIA W Y, FENG Y S, JIN F, et al.Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder[J]. Construction and Building Materials, 2017, 156: 199-207. [7] 冯亚松, 夏威夷, 杜延军, 等. SPB和SPC固化稳定化镍锌污染土的强度及环境特性研究[J]. 岩石力学与工程学报, 2017, 36(12): 3062-3074.
(FENG Ya-song, XIA Wei-yi, DU Yan-jun, et al.Experimental study on the strength and environmental properties of Ni and Zn contaminated soil stabilized by SPB and SPC binders[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3062-3074. (in Chinese))[8] JIN F, AL-TABBAA A.Evaluation of novel reactive MgO activated slag binder for the immobilization of lead and zinc[J]. Chemosphere, 2014, 117: 285-294. [9] DERMATAS D, MENG X.Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils[J]. Engineering Geology, 2003, 70(3/4): 377-394. [10] SHI C J.Steel slag-its production,processing,characteristics and cementitious properties[J]. Journal of Materials in Civil Engineering, 2004, 16(3): 230-236. [11] SONG G, WU Y, CHEN X, et al.Adsorption performance of heavy metal ions between EAF steel slag and common mineral adsorbents[J]. Desalination and Water Treatment,2014, 52(37-39): 7125-7132. [12] AKLIL A, MOUFLIH M, SEBTI S.Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent[J]. Journal of Hazardous Materials, 2004, 112(3): 183-190. [13] GLASSER F P.Fundamental aspects of cement solidification and stabilisation[J]. Journal of Hazardous Materials, 1997, 52(2/3): 151-170. -
期刊类型引用(9)
1. 赵之,杨秀娟,石庆红,樊恒辉,刘翼飞. 磷石膏/木质素固化铅污染土的无侧限抗压强度. 土木与环境工程学报(中英文). 2025(01): 89-99 . 百度学术
2. 沈雪坤,蔡巍,杨博雯,黄旭洋,杨皆宏,刘润. 钢渣粉掺量对超硫磷石膏矿渣胶凝材料性能的影响. 四川水泥. 2025(01): 29-32 . 百度学术
3. 申水玥,李媛媛,李云龙,段帅鹏. 改性硅铝基废渣固化/稳定Pb、Cd污染土工程特性研究. 工业建筑. 2025(03): 223-230 . 百度学术
4. 常睿卿,杨俊杰,武亚磊,鲁瑞帆. CGF固化/稳定化重金属污染土强度及浸出特性. 中国环境科学. 2024(05): 2580-2594 . 百度学术
5. 夏威夷,杜成磊,丁亮,蔡光华,曲常胜. 固化材料复配处理高浓度重金属复合污染土试验研究. 安全与环境学报. 2024(07): 2797-2810 . 百度学术
6. 王应富,张树光,黄啸,李江山,刘磊,王胜杰,程鑫. 磷石膏-钢渣-矿渣固化低液限粉质黏土力学性能及耐久性能研究. 土木工程学报. 2023(S1): 12-23 . 百度学术
7. 孔祥辉,梁允鹏,张进港,王潇康,张峰荣. 氧化镁-脱硫石膏-钢渣联合固化疏浚底泥试验研究. 重庆交通大学学报(自然科学版). 2023(12): 61-69 . 百度学术
8. 席永慧,任天琪,殷乐,杨帆,郭丽南,张敏. 水泥基复合固化剂对镉和锌混合污染土的固化试验研究. 同济大学学报(自然科学版). 2022(11): 1620-1627 . 百度学术
9. 刘松玉,刘宜昭. 江苏地基处理技术创新与应用. 江苏建筑. 2021(03): 11-15+29 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 332
- HTML全文浏览量: 11
- PDF下载量: 127
- 被引次数: 21