• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

隧道三维电阻率E-SCAN超前探测反演与优化方法研究

王传武, 李术才, 聂利超, 刘斌, 郭谦, 任玉晓, 刘海东

王传武, 李术才, 聂利超, 刘斌, 郭谦, 任玉晓, 刘海东. 隧道三维电阻率E-SCAN超前探测反演与优化方法研究[J]. 岩土工程学报, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
引用本文: 王传武, 李术才, 聂利超, 刘斌, 郭谦, 任玉晓, 刘海东. 隧道三维电阻率E-SCAN超前探测反演与优化方法研究[J]. 岩土工程学报, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004
Citation: WANG Chuan-wu, LI Shu-cai, NIE Li-chao, LIU Bin, GUO Qian, REN Yu-xiao, LIU Hai-dong. 3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2): 218-227. DOI: 10.11779/CJGE201702004

隧道三维电阻率E-SCAN超前探测反演与优化方法研究  English Version

基金项目: 国家重点基础研究发展计划(“973”计划)项目(2013CB036002,2015CB058101); 国家重大仪器设备研制专项(51327802); 国家自然科学基金重点项目(51139004); 国家自然科学基金面上项目(51479104); 国家自然科学基金青年科学基金项目(41502279); 中国博士后科学基金项目(2015M572037); 国家重点研发计划(2016YFC0401805)
详细信息
    作者简介:

    王传武(1990- ),男,博士研究生,主要从事勘探地球物理与地下工程灾害防控方面的研究。E-mail: wangcw17@163.com。

    通讯作者:

    聂利超,E-mail:lichaonie@163.com

3D E-SCAN resistivity inversion and optimized method in tunnel advanced prediction

  • 摘要: 超前地质预报是隧道施工中必不可少的环节,将地面三维电阻率E-SCAN观测模式引入到隧道超前预报中,其中供电与采集电极都布置在隧道掌子面,可有效降低旁侧干扰因素的影响,提出了基于三维电阻率E-SCAN的隧道超前探测新型观测模式。建立了隧道三维电阻率E-SCAN超前探测地电模型,获得了敏感度矩阵分布特征:矩阵元素数值较小且相差悬殊;元素绝对值随深度衰减迅速;靠近供电与采集电极位置元素绝对值较高。为改善反演的深度定位问题,对敏感度矩阵中元素施加不同大小的增益因子,对原有敏感度矩阵中高值元素进行抑制,对低值元素进行增益,形成了基于敏感度增益因子的隧道三维电阻率E-SCAN超前探测反演优化方法,在理论上可以提高异常体的深度定位精度。开展数值算例与物理模型试验研究,结果表明在隧道三维电阻率E-SCAN超前探测中,相较于常规光滑约束反演,反演优化方法在异常体的深度定位精度方面具有明显优势。
    Abstract: Advanced geological prediction is one essential part in tunnel construction, and 3D E-SCAN resistivity device is introduced. In this device, the current and measuring electrodes are arranged on the tunnel face, which can reduce the impact of interference factors. Then a new observing device is proposed. Geological models are designed, and features of the sensitivity matrix are obtained as follows: the absolute values of elements are vastly different; the values decrease sharply with depth; the elements close to the current and measuring electrodes achieve high absolute values. The gain factors with different values are imposed onto the elements in the sensitivity matrix, and the initial elements with high values are suppressed, with the elements with low values enhanced. An optimized inverse method is formed based on the gain factors, and it can promote the depth accuracy of the abnormal in inverse results theoretically. Numerical examples and physical model tests are performed. The results show that in the 3D E-SCAN resistivity detection, compared with the traditional smooth constraints inversion, the optimized inverse method has obvious advantages in positioning the abnormal body in depth.
  • [1] 李术才, 刘 斌, 孙怀凤, 等. 隧道施工超前地质预报研究现状及发展趋势[J]. 岩石力学与工程学报, 2014, 33(6): 1090-1113. (LI Shu-cai, LIU Bin, SUN Huai-feng, et al. State of art trends of advanced geological prediction in tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1090-1113. (in Chinese))
    [2] 李术才, 聂利超, 刘 斌, 等. 多同性源阵列电阻率法隧道超前探测方法与物理模拟试验研究[J]. 地球物理学报, 2015, 58(4): 1434-1446. (LI Shu-cai, NIE Li-chao, LIU Bin, et al. Advanced detection and physical model test based on multi-electrode sources array resistivity method in tunnel[J]. Chinese Journal of Geophysics, 2015, 58(4): 1434-1446. (in Chinese))
    [3] 刘 斌, 李术才, 李树忱, 等. 隧道含水构造直流电阻率法超前探测研究[J]. 岩土力学, 2009, 30(10): 3093-3101. (LIU Bin, LI Shu-cai, LI Shu-chen, et al. Study of advanced detection of water-bearing geological structures with DC resistivity method[J]. Rock and Soil Mechanics, 2009, 30(10): 3093-3101. (in Chinese))
    [4] 李术才, 刘 斌, 李树忱, 等. 基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报, 2011, 30(7): 1297-1309. (LI Shu-cai, LIU Bin, LI Shu-chen, et al. Study of advanced detection for tunnel water-bearing geological structures with induced polarization method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1297-1309. (in Chinese))
    [5] 刘 斌, 李术才, 聂利超, 等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报, 2012, 34(10): 1866-1876. (LIU Bin, LI Shu-cai, NIE Li-chao, et al. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1866-1876. (in Chinese))
    [6] 董浩斌, 王传雷. 高密度电法的发展与应用[J]. 地学前缘, 2003, 10(1): 171-176. (DONG Hao-bin, WANG Chuan-lei. Development and application of 2D resistivity imaging surveys[J]. Earth Science Frontiers, 2003, 10(1): 171-176. (in Chinese))
    [7] 黄俊革, 王家林, 阮百尧. 坑道直流电阻率法超前探测研究[J]. 地球物理学报, 2006, 49(5): 1529-1538. (HUANG Jun-ge, WANG Jia-lin, RUAN Bai-yao. A study on advanced detection using DC resistivity method in tunnel[J]. Chinese Journal of Geophysics, 2006, 49(5): 1529-1538. (in Chinese))
    [8] 强建科, 阮百尧, 周俊杰. 三维坑道直流聚焦法超前探测的电极组合研究[J]. 地球物理学报, 2010, 53(3): 695-699. (QIANG Jian-ke, RUAN Bai-yao, ZHOU Jun-jie. Research on the array of electrode of andvanced focus detection with 3D DC resistivity in tunnel[J]. Chinese Journal of Geophysics, 2010, 53(3): 695-699. (in Chinese))
    [9] 黄俊革, 王家林, 阮百尧. 三维高密度电阻率E-SCAN法有限元模拟异常特征研究[J]. 地球物理学报, 2006, 49(4): 1206-1214. (HUANG Jun-ge, WANG Jia-lin, RUAN Bai-yao. A study on FEM modeling of anomalies of 3-D high-density E-SCAN resistivity survey[J]. Chinese Journal of Geophysics, 2006, 49(4): 1206-1214. (in Chinese))
    [10] LI Y, OLDENBURG D W. Approximate inverse mappings in DC resistivity problems[J]. Geophysical Journal International, 1992, 109(2): 343-362.
    [11] LI Y, OLDENBURG D W. 3-D inversion of induced polarization data[J]. Geophysics, 2000, 65(6): 1931-1945.
    [12] 王家映. 地球物理反演理论[M]. 北京: 高等教育出版社, 2002. (WANG Jia-ying. Inverse theory in geophysics[M]. Beijing: Higher Education Press, 2002. (in Chinese))
    [13] 聂利超, 李术才, 刘 斌, 等. 电阻率层析成像法探测滑坡面正演模拟与反演成像研究[J]. 岩土力学, 2011, 32(9): 2873-2879. (NIE Li-chao, LI Shu-cai, LIU Bin, et al. Numerical simulation and inversion imaging research of electrical resistivity tomography method for detecting landslide-face location[J]. Rock and Soil Mechanics, 2011, 32(9): 2873-2879. (in Chinese))
    [14] SASAKI Y. 3-D resistivity inversion using the finite-element method[J]. Geophysics, 1994, 59(12): 1839-1848.
    [15] 宛新林, 席道瑛, 高尔根, 等. 用改进的光滑约束最小二乘正交分解法实现电阻率三维反演[J]. 地球物理学报, 2005, 48(2): 439-444. (WAN Xin-lin, XI Dao-ying, GAO Er-gen, et al. 3-D resistivity inversion by the least-squares QR factorization method under improved smoothness constraint condition[J]. Chinese Journal of Geophysics, 2005, 48(2): 439-444. (in Chinese))
    [16] 黄俊革, 阮百尧, 鲍光淑. 基于有限单元法的三维地电断面电阻率反演[J]. 中南大学学报: 自然科学版, 2004, 35(2): 295-299. (HUANG Jun-ge, RUAN Bai-yao, BAO Guang-shu. Resistivity inversion on 3D section based on FEM[J]. Journal of Central South University (Natural Science), 2004, 35(2): 295-299. (in Chinese))
    [17] 吴小平, 徐果明. 电阻率三维反演中偏导数矩阵的求取与分析[J]. 石油地球物理勘探, 1999, 34(4): 363-372. (WU Xiao-ping, XU Guo-ming. Derivation and analysis of partial derivative matrix in resistivity 3-D inversion[J]. Oil Geophysical Prospecting, 1999, 34(4): 363-372. (in Chinese))
    [18] 黄俊革. 三维电阻率/极化率有限元正演模拟与反演成像[D]. 长沙: 中南大学, 2003. (HUANG Jun-ge. 3-D resistivity/IP modeling and inversion based on FEM[D]. Changsha: Central South University, 2003. (in Chinese))
    [19] MATHIAS R. An arithmetic-geometric-harmonic mean inequality involving Hadamard products[J]. Linear Algebra and Its Applications, 1993, 184: 71-78.
    [20] 聂利超. 隧道施工含水构造激发极化定量超前地质预报理论及其应用[D]. 济南: 山东大学, 2014. (NIE Li-chao. Quantitative identification theory and its application of advanced geological prediction for water-bearing structure using induced polarization in tunnel construction period[D]. Jinan: Shandong University, 2014. (in Chinese))
  • 期刊类型引用(21)

    1. 马凯蒙,张俊儒,颜志坚,汪波. 隧道压力(承载)拱研究现状与展望. 地下空间与工程学报. 2025(02): 551-562 . 百度学术
    2. 朱宇. 基于变形控制的基坑开挖与邻近运营铁路相互影响分析. 甘肃科学学报. 2024(02): 110-116 . 百度学术
    3. 张子新,李小昌,李佳宇. 软土地层盾构掘进土体稳定性模型试验研究. 土木与环境工程学报(中英文). 2024(03): 41-51 . 百度学术
    4. 郭利民. 山区隧道浅层破坏机理及支护体系. 铁道建筑技术. 2024(05): 79-82 . 百度学术
    5. 丁祥,刘勇,韩智铭,张杰达,樊浩博,田野,马凯蒙. 基于压力拱理论的深埋节理岩体隧道围岩压力研究. 河北科技大学学报. 2024(04): 434-442 . 百度学术
    6. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 . 百度学术
    7. 余涛,廖杭,朱宁波,姚志刚,方勇,李希文,田青峰. 粉煤灰堆积体大断面连拱隧道失稳破坏模式及施工力学研究. 岩土工程学报. 2024(09): 1909-1918 . 本站查看
    8. 蒋荣兵,王学军,李夏,伍雨,段少龙. 超浅埋富水砂层地铁隧道开挖安全控制技术研究. 江西建材. 2024(08): 259-261 . 百度学术
    9. 陈志敏,王洪,陈骏,翟文浩,王铎斌,李文豪,蔡昀辰. 西南某岩堆体级配特征与成拱效应研究. 现代隧道技术. 2024(06): 172-181 . 百度学术
    10. 马易学. 松散堆积体隧道进口段施工数值模拟及方案比选分析. 西部交通科技. 2024(12): 160-164 . 百度学术
    11. 孙振宇,皇甫楠琦,张顶立,李沐阳,王嘉琛. 大跨度隧道预应力锚固体系协同承载的压力拱效应. 铁道标准设计. 2023(01): 10-16+24 . 百度学术
    12. 昝文博,钟宇健,王恩波,钱若霖. 泥石流堆积体隧道支护体系优化效果模拟分析. 岩土工程技术. 2023(01): 47-52 . 百度学术
    13. 刘夏冰,麻建飞,贾港帅,贺家新,王文谦. 超大跨隧道分部开挖的压力拱特性分析. 北京工业职业技术学院学报. 2023(02): 1-5+54 . 百度学术
    14. 马啸宇,戚承志,盛志刚,封焱杰,王泽帆. 压力拱厚度和地表沉降关系研究. 北京建筑大学学报. 2023(03): 54-62 . 百度学术
    15. 李同,阮仁酉,石崇,裴亚兵,孙冰岐. 黏土砾石地层隧洞开挖压力拱数值模拟研究. 三峡大学学报(自然科学版). 2023(04): 54-60 . 百度学术
    16. 昝文博,赖金星,曹校勇,冯志华,邱军领,张文接. 漂卵石隧道支护体系受力变形特性. 交通运输工程学报. 2023(04): 205-217 . 百度学术
    17. 郝勇,丁琅. 穿越断层破碎带隧道压力拱研究综述. 上海建材. 2023(05): 50-53 . 百度学术
    18. 张永杰,陈明军,邓沛宇,罗志敏,胡涛. 堆积层边坡与平行穿越隧道相互作用试验研究. 地下空间与工程学报. 2023(S2): 688-697 . 百度学术
    19. 李正伟,汪士钧,侯维永,孙彬煜,张克基. 薄层状岩石试样3D打印与力学特性试验研究. 金属矿山. 2022(03): 78-84 . 百度学术
    20. 晏莉,吕超慧,喻少华,文胜,杨海涛. 近邻双孔隧道围岩联合压力拱试验与数值分析. 北京交通大学学报. 2022(03): 103-109 . 百度学术
    21. 黄旭斌,苗喆,陆希,张凯,邓立文,张华毅. 基于压力拱理论的极软岩隧洞衬砌应力变形研究. 西北水电. 2022(05): 145-149 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 36
出版历程
  • 收稿日期:  2016-04-26
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回