• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

土石料粒径与级配的图像智能识别研究

刘禹杉, 孙淼军, 吴帅峰, 张丽雅, 孙黎明

刘禹杉, 孙淼军, 吴帅峰, 张丽雅, 孙黎明. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
引用本文: 刘禹杉, 孙淼军, 吴帅峰, 张丽雅, 孙黎明. 土石料粒径与级配的图像智能识别研究[J]. 岩土工程学报, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
LIU Yushan, SUN Miaojun, WU Shuaifeng, ZHANG Liya, SUN Liming. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051
Citation: LIU Yushan, SUN Miaojun, WU Shuaifeng, ZHANG Liya, SUN Liming. Intelligent image recognition of particle size and gradation of earth-rock[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 59-62. DOI: 10.11779/CJGE2023S10051

土石料粒径与级配的图像智能识别研究  English Version

基金项目: 

浙江省“尖兵”研发攻关计划项目 2022C03009

中国电建集团重点科技项目 DJ-ZDXM-2019-3

详细信息
    作者简介:

    刘禹杉(1997—),女,工程师,主要从事水利工程信息化方面的研究工作。E-mail: wusf@iwhr.com

    通讯作者:

    吴帅峰, E-mail: wusf@iwhr.com

  • 中图分类号: TU43

Intelligent image recognition of particle size and gradation of earth-rock

  • 摘要: 土石料的级配直接影响着土石坝的质量与防渗,为解决传统人工筛分和目测超粒径剔除的低效率与随机性。采用基于MaskRCNN算法的图像识别技术,从标准球体的图像识别入手,研究了不同组别粒径下识别球体数量与真实数量间的关系,提出了将颗粒平面识别向空间体积扩展的椭球计算方法,建立了基于指数函数的图像识别与级配之间的转换方法。采用该方法应用于碎石料和砂石料的粒径与级配识别中,相关系数均提升10%以上,级配曲线所反映的CuCc准确度最高提升35.26%。该研究为土石料级配的图像识别提供了新方法。
    Abstract: The gradation of soil and stone materials directly affects the quality and anti-seepage of earth-rock dams. In order to solve the low efficiency and randomness of the traditional manual screening and the visual removal of oversized particles, the image recognition technology based on the MaskRCNN algorithm is used to start with the image recognition of standard spheres, and the relationship between the number of recognized spheres and the real number under different groups of particle sizes is studied. The ellipsoid calculation method that extends particle plane recognition to space volume is proposed, and the transformation method between the image recognition and the gradation based on the exponential function is established. By applying this method to the identification of particle size and the gradation of crushed stone and gravel, the correlation coefficient increases by more than 10%, and the accuracy of Cu and Cc reflected by the gradation curve is up to 35.26%. This stud may provide a new method for the image recognition of soil and stone gradation.
  • 图  1   训练识别过程

    Figure  1.   Training identification process

    图  2   土石颗粒识别近似转换

    Figure  2.   Approximate transformation for identification of soil-rock particle

    图  3   标准球体设计级配曲线

    Figure  3.   Design gradation curve of standard sphere

    图  4   标准球体识别试验

    Figure  4.   Identification tests on standard ball

    图  5   试验识别与设计级配在各粒径下倍数关系

    Figure  5.   Relationship between test identification and design gradation under each particle size

    图  6   空间修正后识别试验级配曲线对比

    Figure  6.   Comparison of gradation curves of identification tests after spatial correction

    图  7   碎石料5组识别试验

    Figure  7.   Five groups of identification tests on crushed stone

    图  8   碎石土修正模型的应用

    Figure  8.   Application of modified model for gravelly soil

    图  9   砂石料5组识别试验

    Figure  9.   Five groups of identification tests on sand and gravel

    图  10   砂石料修正模型的应用

    Figure  10.   Application of modified model for sand and gravel

  • [1] 杨玉生, 赵剑明, 王龙, 等. 级配特征对筑坝砂砾料填筑标准的影响[J]. 水利学报, 2019, 50(11): 1374-1383. doi: 10.13243/j.cnki.slxb.20190547

    YANG Yusheng, ZHAO Jianming, WANG Long, et al. Influence of gradation characteristics on filling standard of sand gravel material for dam construction[J]. Journal of Hydraulic Engineering, 2019, 50(11): 1374-1383. (in Chinese) doi: 10.13243/j.cnki.slxb.20190547

    [2] 汤洪洁, 杨正权. 高土石坝筑坝材料特性的认识与思考[J]. 水利规划与设计, 2019(1): 125-129. doi: 10.3969/j.issn.1672-2469.2019.01.035

    TANG Hongjie, YANG Zhengquan. Understanding and thinking on the characteristics of dam materials for high earth-rock dams[J]. Water Resources Planning and Design, 2019(1): 125-129. (in Chinese) doi: 10.3969/j.issn.1672-2469.2019.01.035

    [3] 朱晟, 钟春欣, 郑希镭, 等. 堆石体的填筑标准与级配优化研究[J]. 岩土工程学报, 2018, 40(1): 108-115. doi: 10.11779/CJGE201801010

    ZHU Sheng, ZHONG Chunxin, ZHENG Xilei, et al. Filling standards and gradation optimization of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 108-115. (in Chinese) doi: 10.11779/CJGE201801010

    [4]

    ZHANG S L, WU G J, YANG X G, et al. Digital image-based identification method for the determination of the particle size distribution of dam granularmateria[J]. KSCE Journal of Civil Engineering, 2018, 22(8): 2820-2833. doi: 10.1007/s12205-017-0304-8

    [5] 张国英, 邱波, 刘冠洲, 等. 基于图像的原矿碎石粒度检测与分析系统[J]. 冶金自动化, 2012, 36(3): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-YJZH201203018.htm

    ZHANG Guoying, QIU Bo, LIU Guanzhou, et al. Image-based volume modeling and particle size analysis system of crushed ore[J]. Metallurgical Industry Automation, 2012, 36(3): 47-50 (in Chinese https://www.cnki.com.cn/Article/CJFDTOTAL-YJZH201203018.htm

    [6]

    HAN D, ZHU J H, LI L L. et al. Verification andapplication of two-dimensional slice identificationmethod in three-dimensional mesostructure under different aggregate gradations and packing algorithms[J]. Construction and Building Materials, 2016, 102(1): 843-851.

    [7] 雷雨萌, 陈祖煜, 于沭, 等. 基于深度阈值卷积模型的土石料级配智能检测方法研究[J]. 水利学报, 2021, 52(3): 369-380. doi: 10.13243/j.cnki.slxb.20200499

    LEI Yumeng, CHEN Zuyu, YU Shu, et al. Intelligent detection of gradation for earth-rockfill materials base on Deep Otsu Convolutional Neural Network[J]. Journal of Hydraulic Engineering, 2021, 52(3): 369-380. (in Chinese) doi: 10.13243/j.cnki.slxb.20200499

    [8]

    LEE J R J, SMITH M L, SMITH L N. New approach to the three-dimensional quantification of angularity using image analysis of the size and form of coarse aggregates[J]. Engineering Geology, 2007, 91(2): 254-264.

    [9]

    SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation[J]. Journal of Electronic Imaging, 2004, 13(1): 146-168. doi: 10.1117/1.1631315

    [10] 黄鹏, 郑淇, 梁超. 图像分割方法综述[J]. 武汉大学学报(理学版), 2020, 66(6): 519-531. doi: 10.14188/j.1671-8836.2019.0002

    HUANG Peng, ZHENG Qi, LIANG Chao. Overview of image segmentation methods[J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(6): 519-531. (in Chinese) doi: 10.14188/j.1671-8836.2019.0002

  • 期刊类型引用(0)

    其他类型引用(1)

图(10)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  51
  • PDF下载量:  86
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-07-04
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回