• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

工程尺度缓冲材料热-水-力多场耦合数值模拟研究

赵敬波, 曹胜飞, 李杰彪, 陈亮, COLLINFrederic, 刘月妙, 张奇

赵敬波, 曹胜飞, 李杰彪, 陈亮, COLLINFrederic, 刘月妙, 张奇. 工程尺度缓冲材料热-水-力多场耦合数值模拟研究[J]. 岩土工程学报, 2024, 46(8): 1712-1722. DOI: 10.11779/CJGE20230679
引用本文: 赵敬波, 曹胜飞, 李杰彪, 陈亮, COLLINFrederic, 刘月妙, 张奇. 工程尺度缓冲材料热-水-力多场耦合数值模拟研究[J]. 岩土工程学报, 2024, 46(8): 1712-1722. DOI: 10.11779/CJGE20230679
ZHAO Jingbo, CAO Shengfei, LI Jiebiao, CHEN Liang, COLLIN Frederic, LIU Yuemiao, ZHANG Qi. Numerical simulation of coupled thermo-hydro-mechanical (THM) behavior of buffer material in the China-Mock-up tests at engineering scale[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1712-1722. DOI: 10.11779/CJGE20230679
Citation: ZHAO Jingbo, CAO Shengfei, LI Jiebiao, CHEN Liang, COLLIN Frederic, LIU Yuemiao, ZHANG Qi. Numerical simulation of coupled thermo-hydro-mechanical (THM) behavior of buffer material in the China-Mock-up tests at engineering scale[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1712-1722. DOI: 10.11779/CJGE20230679

工程尺度缓冲材料热-水-力多场耦合数值模拟研究  English Version

基金项目: 

国家国防科技工业局项目(地下实验室条件下缓冲材料原位试验安装技术研究) 

国家自然科学基金项目 U2267217

核设施退役及放射性废物治理专项项目 科工二司[2022]736号

详细信息
    作者简介:

    赵敬波(1988—),男,博士,正高级工程师,主要从事高放废物地质处置水文地质与缓冲材料等方面的研究工作。E-mail: zhaojingbobriug@outlook.com

    通讯作者:

    曹胜飞, E-mail: csf831016@163.com

  • 中图分类号: TU443

Numerical simulation of coupled thermo-hydro-mechanical (THM) behavior of buffer material in the China-Mock-up tests at engineering scale

  • 摘要: 缓冲材料作为填充在废物罐与地质体之间重要的人工屏障,对高放废物处置库的长期安全至关重要。以工程尺度缓冲材料热-水-力多场耦合大型模型试验系统(China-Mock-up)为研究对象,采用有限元数值模拟软件LAGAMINE,考虑试验过程中复杂的边界条件与材料属性,实现了近5 a试验数据的定量模拟。模拟结果可准确预测试验系统内部不同特征点温度随室温周期性波动及线性增长这一动态变化规律;能够较好反映不同特征点相对湿度随时间的行为演化趋势,在加热器附近区域呈现出先干燥后饱和的现象,远离加热器区域则逐渐增大;模拟的总应力与实测试验数据间表现较好地一致性,能够反映试验台架内部不同特征点的总应力随时间逐渐增大这一演化过程。揭示了多场耦合条件下缓冲材料(膨润土)温度、湿度及应力的相互作用关系,为深入认识处置库环境下缓冲材料行为演化特征提供了重要的参考依据。
    Abstract: The buffer material plays a crucial role in the long-term safety of a high-level radioactive waste repository as it serves as a defense between the waste container and the host rock. To investigate the long-term performance of Gaomiaozi (GMZ) bentonite under repository conditions, based on the China-Mock-up test at engineering scale, the finite element code LAGAMINE is established to establish the THM numerical model. The complex boundary conditions and material properties involved in the test are considered, and the simulated results of temperature, relative humidity and swelling pressure are compared with the experimental ones over the past five years. The temperature in the China-Mock-up test is found to be periodic and linear, primarily influenced by the room temperature, which is accurately captured by the proposed model. Furthermore, the overall variation of the relative humidity at different locations is well reproduced. A desaturation-saturation process is observed in proximity to the heater, while it does not occur far from the heater. Additionally, the simulated results exhibit good agreement with the recorded data, effectively reflecting the increasing trend of stress over time. Besides, the interaction between temperature, humidity and stress of bentonite under the coupled THM conditions is achieved. These findings provide valuable insights into the long-term behavior of buffer materials in a repository environment and serve as an important reference for further understanding.
  • 图  1   China-Mock-up模型试验装置结构剖面图[23]

    Figure  1.   Sketch of China-Mock-up facility [23]

    图  2   China-Mock-up试验数值模型与网格剖分结果

    Figure  2.   Numerical model for China-Mock-up experiment and mesh grids

    图  3   高庙子膨润土土水特征曲线

    Figure  3.   Water-retention curve of Gaomiaozi bentonite

    图  4   饱和度与相对渗透率之间的拟合曲线图

    Figure  4.   Relative permeability of GMZ bentonite as a function of degree of saturation

    图  5   高庙子膨润土导热系数与饱和度的关系

    Figure  5.   Thermal conductivity of GMZ bentonite as a function of degree of saturation

    图  6   试验加热过程及数值拟合结果

    Figure  6.   Heating process and numerical results of heater strip

    图  7   室温与数值拟合结果随时间的变化

    Figure  7.   Variation in room temperature and numerical results with time

    图  8   注水量及平均注水速率随时间的变化

    Figure  8.   Water injection process in China-Mock-up test

    图  9   试验台架膨润土内部不同区域特征点温度的模拟结果

    Figure  9.   Comparison between predictive temperature and experimental results at different locations of China-Mock-up facility

    图  10   试验台架内部不同时刻温度场分布云图

    Figure  10.   Temperature distribution at different time

    图  11   试验台架膨润土内部不同区域特征点相对湿度的模拟结果

    Figure  11.   Comparison between predictive relative humidity and experimental results at different locations of China-Mock-up facility

    图  12   试验台架内部不同时刻水压分布云图(仅显示膨润土块体和破碎颗粒)

    Figure  12.   Porewater pressure distribution at different times (Only the domains representing compacted bentonite blocks and crushed bentonite pellets are presented here)

    图  13   试验台架膨润土内部不同区域特征点总应力模拟结果

    Figure  13.   Comparison between predictive total stress and experimental results at different locations of China-Mock-up facility

  • [1] 郭永海, 王驹, 金远新. 世界高放废物地质处置库选址研究概况及国内进展[J]. 地学前缘, 2001, 8(2): 327-332. doi: 10.3321/j.issn:1005-2321.2001.02.017

    GUO Yonghai, WANG Ju, JIN Yuanxin. The general situation of geological disposal repository siting in the world and research progress in China[J]. Earth Science Frontiers, 2001, 8(2): 327-332. (in Chinese) doi: 10.3321/j.issn:1005-2321.2001.02.017

    [2] 曹胜飞, 刘月妙, 谢敬礼, 等. 缓冲材料热-水-力耦合模型试验研究[J]. 地下空间与工程学报, 2020, 16(4): 1123-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202004021.htm

    CAO Shengfei, LIU Yuemiao, XIE Jingli, et al. Study on thermo-hydro-mechanical coupling behaviors of buffer material[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(4): 1123-1129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202004021.htm

    [3]

    CLEALL P J, MELHUISH T A, THOMAS H R. Modelling the three-dimensional behaviour of a prototype nuclear waste repository[J]. Engineering Geology, 2006, 85(1/2): 212-220.

    [4]

    HÖEKMARK H, LEDESMA A, LASSABATERE T, et al. Modelling heat and moisture transport in the ANDRA/SKB temperature buffer test[J]. Physics and Chemistry of the Earth, 2007, 32(8-14): 753-766. doi: 10.1016/j.pce.2006.04.024

    [5]

    BAG R. Coupled Thermos-Hydro-Mechanical-Chemical Behaviour of MX80 Bentonite in Geotechnical Applications[D]. Cardiff: Cardiff University, 2011.

    [6]

    MÜELLER H R, WEBER H P, KÖEHLER S, et al. The full-scale Emplacement (FE) Experiment at the Mont Terri URL[C]// 5th International Conference on Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Montpellier, 2012.

    [7]

    WANG X R, SHAO H, WANG W Q, et al. Numerical modeling of heating and hydration experiments on bentonite pellets[J]. Engineering Geology, 2015, 198: 94-106. doi: 10.1016/j.enggeo.2015.09.009

    [8]

    SAMPER J, ZHENG L, MONTENEGRO L, et al. Coupled thermo-hydro-chemical models of compacted bentonite after FEBEX in situ test[J]. Applied Geochemistry, 2008, 23(5): 1186-1201. doi: 10.1016/j.apgeochem.2007.11.010

    [9]

    MICHALEC Z, BLAHETA R, HASAL M, et al. Fully coupled thermo-hydro-mechanical model with oversaturation and its validation to experimental data from FEBEX experiment[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139: 104567. doi: 10.1016/j.ijrmms.2020.104567

    [10]

    XU H, ZHENG L, RUTQVIST J, et al. Numerical study of the chemo-mechanical behavior of FEBEX bentonite in nuclear waste disposal based on the Barcelona expansive model[J]. Computers and Geotechnics, 2021, 132: 103968. doi: 10.1016/j.compgeo.2020.103968

    [11]

    THOMAS H R, CLEALL P J, DIXON D, et al. The coupled thermal-hydraulic-mechanical behaviour of a large-scale in situ heating experiment[J]. Géotechnique, 2009, 59 (4): 401-413. doi: 10.1680/geot.2009.59.4.401

    [12]

    GUO R P, DIXON D, CHANDLER N. Use of numerical simulations to assess hydraulic and mechanical measurements of bentonite–sand buffer in an in-floor borehole[J]. Engineering Geology, 2010, 114(3/4): 433-443.

    [13]

    GUO R P. Thermo-hydro-mechanical modelling of the buffer/container experiment[J]. Engineering Geology, 2011, 122(3): 303-315.

    [14]

    CHO W J, LEE J O, KWON S. Analysis of thermo– hydro–mechanical process in the engineered barrier system of a high-level waste repository[J]. Nuclear Engineering and Design, 2010, 240(6): 1688-1698. doi: 10.1016/j.nucengdes.2010.02.027

    [15]

    PACOVSKÝ J, SVOBODA J, ZAPLETAL L. Saturation development in the bentonite barrier of the Mock-Up-CZ geotechnical experiment[J]. Physics and Chemistry of the Earth, 2007, 32(8/9/10/11/12/13/14): 767-779.

    [16]

    ROMERO E, LI X L. Thermo-hydro-mechanical characterization of OPHELIE backfill mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 733-740. doi: 10.3321/j.issn:1000-6915.2006.04.008

    [17]

    RUTQVIST J, BARR D, BIRKHOLZER J T, et al. Results from an international simulation study on coupled thermal, hydrological, and mechanical processes near geological nuclear waste repositories[J]. Nuclear Technology, 2008, 163(1): 101-109. doi: 10.13182/NT08-A3974

    [18]

    ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Géotechnique, 1990, 40(3): 405-430. doi: 10.1680/geot.1990.40.3.405

    [19]

    ALONSO E E, VAUNAT J, GENS A. Modelling the mechanical behaviour of expansive clays[J]. Engineering Geology, 1999, 54(1/2): 173-183.

    [20] 王驹, 陈伟明, 苏锐, 等. 高效废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015

    [21]

    CUI Y J, TANG A M, QIAN L X, et al. Thermal-mechanical behavior of compacted GMZ bentonite[J]. Soils & Foundations, 2011, 51(6): 1065-1074.

    [22]

    YE W M, WAN M, CHEN B, et al. An unsaturated hydraulic conductivity model for compacted GMZ01 bentonite with consideration of temperature[J]. Environmental Earth Sciences, 2014, 71(4): 1937-1944. doi: 10.1007/s12665-013-2599-1

    [23]

    CHEN L, LIU Y M, WANG J, et al. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2014, 172(8): 57-68. http://www.xueshufan.com/publication/2046167446

    [24]

    CHEN L, WANG J, LIU Y M, et al. Numerical thermo-hydro-mechanical modeling of compacted bentonite in China-mock-up test for deep geological disposal[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(2): 183-192. doi: 10.3724/SP.J.1235.2012.00183

    [25]

    ZHAO J B, CHEN L, COLLIN F, et al. Numerical modeling of coupled thermal-hydro-mechanical behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2016, 214: 116-126. doi: 10.1016/j.enggeo.2016.09.015

图(13)
计量
  • 文章访问数:  317
  • HTML全文浏览量:  34
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-18
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回