A CPTU-based earth pressure model for deep excavations under complex environment and its practical application
-
摘要: 土压力计算是深基坑围护结构设计的重要组成部分,但现有土压力模型难以合理地考虑开挖扰动诱发土体工程性质演化影响。孔压静力触探(piezocone penetration test, CPTU)能够有效避免取样扰动,并快速提供连续的原位土测试参数(锥尖阻力、侧壁摩阻力、孔隙水压力)。基于CPTU原位测试和位移相关土压力模型,结合库仑土压力框架,综合考虑开挖诱发土体工程性质演化、邻近地下结构(受限空间)、土拱效应、地基土强度参数和土-结构界面摩擦角等影响因素,构建了复杂环境下深基坑土压力统一计算模型(主动状态至被动状态)。分别通过与室内1g模型试验和离心机试验结果对比,验证了所构建模型的准确性与合理性。进一步将所构建模型应用至太湖冲湖积相软土地区某邻近地铁车站的深基坑工程。现场分别在基坑开挖前后对围护结构的两侧(基坑内外)开展了CPTU原位测试,并监测得到了围护结构侧向变形与土压力变化。原位测试解译结果表明,基坑开挖显著地改变了周边土体状态参数,但对于有效内摩擦角的影响甚微。与现场所测土压力对比指出,基于CPTU的土压力模型能够较好地反映复杂环境下基坑土压力变化,成功实现了工程应用。
-
关键词:
- 孔压静力触探(CPTU) /
- 原位土力学 /
- 开挖扰动 /
- 受限空间 /
- 位移相关土压力
Abstract: The determination of earth pressure is a key element for the design of retaining structures of deep excavations. However, the existing earth pressure models can not reasonably consider the change of soil properties induced by excavation activities. The piezocone penetration test (CPTU) is capable of effectively avoiding the sampling disturbance and quickly providing the continuous in-situ testing parameters of soils (cone resistance, sleeve friction, pore water pressure). Combining the CPTU tests and the displacement-based earth pressure model, the change of soil properties induced by excavations, surrounding buried structures (confined soil), soil arching effects, soil strength parameters and friction angle of the soil-structure interface are comprehensively taken into account to develop a unified earth pressure model (from active- to passive-state) under the Coulomb's earth pressure framework. The comparisons of earth pressures obtained between 1g-/ng- model tests and the developed model are made for the validation. Subsequently, the developed model is employed in a deep excavation adjacent to a metro station in soft soils deposited in the Taihu Lake. The CPTU tests are then performed in the soils around both sides of retaining structures, of which the earth pressure and lateral deformation are also measured. The interpretation of in-situ testing results indicates that state parameters of soils significantly change due to excavations, but the effective friction angle almost remains unchanged. The further comparisons of earth pressures obtained between the measurement and the developed model indicate that the CPTU-based earth pressure model works well for a deep excavation under a complex environment, thus successfully reaching a practical application. -
-
土体类型 sa sp sp/sa 密砂 0.001H 0.01H 10 中密砂 0.002H 002H 10 松砂 0.004H 0.04H 10 硬黏土 — — — 软黏土 — — — 压实粉土 0.002H 0.02H 10 压实纯黏土 0.01H 0.05H 5 压实有机质黏土 0.01H 0.05H 5 注:H为支护结构高度。 表 2 基坑土压力模型计算参数
Table 2 Parameters of earth pressure model for a deep excavation
GU z/m γw/(kN·m-3) σv/kPa c'/kPa φ′/(°) δ/(°) OCR K0 s/mm sa/mm sp/mm a b c a b c MG 0.0 17.1 25.7 0.0 30.3 10.1 1.0 1.0 — 0.50 0.50 — 4.9 3.0 30.0 GU1 3.0 17.0 72.5 2.2 27.5 9.2 1.2 1.0 — 0.59 0.54 — 7.3 30.0 300.0 GU2 5.5 18.0 116.2 0.0 34.2 11.4 1.2 0.9 — 0.49 0.41 — 9.9 4.0 40.0 GU3 8.0 19.1 224.7 0.0 37.9 12.6 1.6 1.4 — 0.52 0.47 — 15.1 8.0 80.0 GU4 17.0 17.5 337.0 10.1 27.5 9.2 2.1 1.4 — 0.76 0.63 —- 16.4 40.0 400.0 GU5 20.0 19.1 411.0 0.0 29.1 9.7 1.0 1.0 9.0 0.51 0.51 1.50 12.6 6.0 60.0 GU6 25.0 17.0 526.5 0.0 25.1 8.4 1.6 1.0 2.5 0.70 0.58 0.85 6.5 70.0 700.0 GU7 33.0 19.8 733.2 0.0 36.6 12.2 1.0 1.0 1.0 0.40 0.40 0.40 2.5 18.0 180.0 GU8 47.0 — — 0.0 — — — — — 0.50 0.50 0.50 — — — 注:OCR (a,b,c) = OCR (开挖前坑外土/开挖后坑外土/开挖后坑内土),K0 (a,b,c) = K0 (开挖前坑外土/开挖后坑外土/开挖后坑内土),Ba = 12.0 m,He = 18.5 m,H = 47.5 m,Bp = 49.7 m。 -
[1] SCHWEIGER H F, TSCHUCHNIGG F. A numerical study on undrained passive earth pressure[J]. Computers and Geotechnics, 2021, 140: 104441. doi: 10.1016/j.compgeo.2021.104441
[2] 赖丰文, 刘松玉, 杨大禹, 等. 有限宽度填土挡墙主动土压力的普适解法[J]. 岩土工程学报, 2022, 44(3): 483-491. doi: 10.11779/CJGE202203010 LAI Fengwen, LIU Songyu, YANG Dayu, et al. Generalized solution to active earth pressure exerted onto retaining wall with narrow backfills[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 483-491. (in Chinese) doi: 10.11779/CJGE202203010
[3] FANG Y S, CHEN T J, WU B F. Passive earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1994, 120(8): 1307-1323. doi: 10.1061/(ASCE)0733-9410(1994)120:8(1307)
[4] FANG Y S, ISHIBASHI I. Static earth pressures with various wall movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333. doi: 10.1061/(ASCE)0733-9410(1986)112:3(317)
[5] DENG C, HAIGH S K. Earth pressures mobilised in dry sand with active rigid retaining wall movement[J]. Géotechnique Letters, 2021, 11(3): 202-208. doi: 10.1680/jgele.20.00116
[6] DENG C, HAIGH S K. Sand deformation mechanisms and earth pressures mobilised with passive rigid retaining wall movements[J]. Géotechnique, 2022: 1-14.
[7] FAN X, XU C, LIANG L, et al. Analytical solution for displacement-dependent passive earth pressure on rigid walls with various wall movements in cohesionless soil[J]. Computers and Geotechnics, 2021, 140: 104470. doi: 10.1016/j.compgeo.2021.104470
[8] WANG L, XIAO S. Calculation method for displacement- dependent earth pressure on a rigid wall rotating around its base[J]. International Journal of Geomechanics, 2021, 21(8): 04021132. doi: 10.1061/(ASCE)GM.1943-5622.0002104
[9] NEJJAR K, DIAS D, CUIRA F, et al. Numerical modelling of a 32 m deep excavation in the suburbs of Paris[J]. Engineering Structures, 2022, 268: 114727. doi: 10.1016/j.engstruct.2022.114727
[10] NEJJAR K, DIAS D, CUIRA F, et al. Experimental study of the performance of a 32 m deep excavation in the suburbs of Paris[J]. Géotechnique, 2021: 1-11.
[11] MEI G, CHEN Q, SONG L. Model for predicting displacement-dependent lateral earth pressure[J]. Canadian Geotechnical Journal, 2009, 46(8): 969-975. doi: 10.1139/T09-040
[12] MEI G, CHEN R, LIU J. New insight into developing mathematical models for predicting deformation-dependent lateral earth pressure[J]. International Journal of Geomechanics, 2017, 17(8): 06017003. doi: 10.1061/(ASCE)GM.1943-5622.0000902
[13] NI P, MANGALATHU S, SONG L, et al. Displacement- dependent lateral earth pressure models[J]. Journal of Engineering Mechanics, 2018, 144(6): 04018032. doi: 10.1061/(ASCE)EM.1943-7889.0001451
[14] NI P, MEI G, ZHAO Y. Displacement-dependent earth pressures on rigid retaining walls with compressible geofoam inclusions: physical modeling and analytical solutions[J]. International Journal of Geomechanics, 2017, 17(6): 04016132. doi: 10.1061/(ASCE)GM.1943-5622.0000838
[15] NI P, SONG L, MEI G, et al. On predicting displacement- dependent earth pressure for laterally loaded piles[J]. Soils and Foundations, 2018, 58(1): 85-96. doi: 10.1016/j.sandf.2017.11.007
[16] POTTS D, FOURIE A. A numerical study of the effects of wall deformation on earth pressures[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10(4): 383-405. doi: 10.1002/nag.1610100404
[17] British Code BA42/96 The Design of Integral Bridges[S]. London: Highways Agency, 1996.
[18] DUNCAN J M, MOKWA R L. Passive earth pressures: theories and tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 248-257. doi: 10.1061/(ASCE)1090-0241(2001)127:3(248)
[19] Transportation Officials, Subcommittee on Bridges. AASHTO Guide Specifications for LRFD Seismic Bridge Design[S]. AASHTO, 2011.
[20] 刘松玉, 吴燕开. 论我国静力触探技术(CPT) 现状与发展[J]. 岩土工程学报, 2004, 26(4): 553-556. http://cge.nhri.cn/cn/article/id/11468 LIU Songyu, WU Yankai. On the state-of-art and development of CPT in China[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(4): 553-556. (in Chinese) http://cge.nhri.cn/cn/article/id/11468
[21] 蔡国军, 刘松玉, 童立元, 等. 现代数字式多功能CPTU与中国CPT对比试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 914-928. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905011.htm CAI Guojun, LIU Songyu, TONG Liyuan, et al. Comparative study of modern digital multifunctional CPTU and China's CPT tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 914-928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200905011.htm
[22] MAYNE P W, COOP M R, SPRINGMAN S M, et al. Geomaterial behavior and testing[C]// Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering. IOS Press, 2009: 2777-2872.
[23] LI H, LIU S, TONG L. Evaluation of lateral response of single piles to adjacent excavation using data from cone penetration tests[J]. Canadian Geotechnical Journal, 2019, 56(2): 236-248.
[24] 李赞, 刘松玉, 吴恺, 等. 基于多功能CPTU测试的基坑开挖扰动深度确定方法[J]. 岩土工程学报, 2021, 43(1): 181-187. doi: 10.11779/CJGE202101021 LI Zan, LIU Songyu, WU Kai, et al. Determination of the disturbance depth due to excavations using multifunctional CPTU tests[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(1): 181-187. (in Chinese) doi: 10.11779/CJGE202101021
[25] LU T, LIU S, CAI G, et al. Effect of excavation disturbance on clayey soil mechanical properties and pile capacity[J]. International Journal of Geomechanics, 2022, 22(7): 05022003.
[26] LAI F, ZHANG N, LIU S, et al. A generalised analytical framework for active earth pressure on retaining walls with narrow soil[J]. Géotechnique, 2022: 1-16.
[27] LI C, LAI F, SHIAU J, et al. Passive earth pressure in narrow cohesive-frictional backfills[J]. International Journal of Geomechanics, 2023, 23(1): 04022262.
[28] CLOUGH G, DUNCAN J. Foundation Engineering Handbook[M]. New York: Springer, 1991. [29] MAYNE P. Evaluating effective stress parameters and undrained shear strengths of soft-firm clays from CPT and DMT[J]. Australian Geomechanics Journal, 2016, 51(4): 27-55.
[30] OUYANG Z, MAYNE P W. Modified NTH method for assessing effective friction angle of normally consolidated and overconsolidated clays from piezocone tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(10): 04019067.
[31] MAYNE P W. Integrated Ground Behavior: In-Situ and Labtests[M]// London: Taylor & Francis, 2005.
[32] AGAIBY S S, MAYNE P W. CPT evaluation of yield stress profiles in soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019104.
[33] POTYONDY J G. Skin friction between various soils and construction materials[J]. Géotechnique, 1961, 11(4): 339-353.
[34] LUNNE T, BERRE T, ANDERSEN K H, et al. Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays[J]. Canadian Geotechnical Journal, 2006, 43(7): 726-750.
[35] BLAKER Ø, DEGROOT D J. Intact, disturbed, and reconstituted undrained shear behavior of low-plasticity natural silt[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(8): 04020062.
[36] 杨光华. 土力学发展的四个阶段的思考[J]. 岩土工程学报, 2022, 44(9): 1730-1732. doi: 10.11779/CJGE202209018 YANG Guanghua. Thingking of four stages of development of soil mechanics [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1730-1732. (in Chinese) doi: 10.11779/CJGE202209018
-
期刊类型引用(29)
1. 孙厚振,张旭,刘秀杰. 基坑开挖诱发粉质黏土蠕变沉降的变形分析. 科技创新与应用. 2025(08): 104-108 . 百度学术
2. 叶帅华,唐宁,李京榜. 降雨入渗条件下框架锚杆支护边坡稳定性与变形分析. 地基处理. 2024(01): 77-89 . 百度学术
3. 黄伟豪. 基于监测数据的广州软土基坑深层水平位移分析. 四川建材. 2024(03): 69-71+74 . 百度学术
4. 田瑞端,肖见航,王晓睿. 特大暴雨引起的深基坑变形分析及降水处理. 水利与建筑工程学报. 2024(05): 38-45 . 百度学术
5. 赵军. 砂土地层深基坑施工影响邻近既有管廊变形预测. 路基工程. 2024(06): 221-225 . 百度学术
6. 王棣,田大浪. 含裂隙岩质深基坑桩锚支护结构变形特征研究. 岩土工程技术. 2023(02): 238-246 . 百度学术
7. 秦玉婷. 软土地区地铁车站基坑支护结构变形研究. 广东水利电力职业技术学院学报. 2023(02): 36-39 . 百度学术
8. 董连成,王志,金圣豪. 基于一维土柱试验的降雨入渗规律研究. 低温建筑技术. 2023(03): 105-108+113 . 百度学术
9. 田月峰. 基于横向位移控制的斜坡桥梁桩基加固方案分析. 高速铁路技术. 2023(03): 48-54 . 百度学术
10. 侯超虎. 某深基坑支护结构风险预警诱因分析. 江西建材. 2023(04): 97-99 . 百度学术
11. 付鹏,石希,沈杰超,陈韵. 强降雨对粉质黏土地区基坑围护结构变形影响的研究. 建筑结构. 2023(S1): 2898-2901 . 百度学术
12. 褚东升,代文超,占宇飞,詹刚毅,石钰锋,陈焕然. 降雨影响下紧邻桥梁软土基坑围护结构受力变形研究. 科学技术与工程. 2023(24): 10479-10486 . 百度学术
13. 阙云,邱婷,蔡沛辰,马宏岩,谢秀栋,薛斌. 基于QSGS法3D重构土体渗流场的LBM数值模拟. 湖南大学学报(自然科学版). 2023(09): 119-130 . 百度学术
14. 白柱. 开挖荷载作用下深基坑施工环境影响及控制研究. 江西建材. 2023(08): 185-186+189 . 百度学术
15. 张治国,毛敏东,王卫东,PAN Y T,吴钟腾. 降雨影响下基坑开挖施工对邻近基桩变形响应分析. 岩土力学. 2023(S1): 27-49 . 百度学术
16. 王鹏,任鹏,张华,唐印,张子东. 基于h型双排桩支护结构的黏土基坑大变形机理研究. 四川建筑科学研究. 2022(03): 54-62+78 . 百度学术
17. 曾英俊. 极端降雨下轨道交通车站深基坑安全分析与控制. 中国市政工程. 2022(03): 103-107+143-144 . 百度学术
18. 李向阳,傅林峰,姚鑫林,应胜一. 暴雨天气下超大深基坑抢险施工技术措施. 建筑结构. 2022(S1): 3087-3090 . 百度学术
19. 倪小东,王琛,唐栋华,陆江发,王晓远,陈万春. 软土地区深基坑超大变形预警及诱因分析. 中南大学学报(自然科学版). 2022(06): 2245-2254 . 百度学术
20. 贾建彬. 富水砂砾层深基坑围护结构方案比选与实施. 铁道建筑技术. 2022(07): 157-162 . 百度学术
21. 张小倩,李明广,陈锦剑,林立华. 降雨对非饱和残积土中基坑受力变形影响的机理研究. 工程地质学报. 2022(04): 1266-1274 . 百度学术
22. 陈柏灿. 岩土工程勘察对基坑支护施工的影响. 江西建材. 2022(10): 136-137+140 . 百度学术
23. 赵平. 深基坑开挖影响的有限元模拟与监测. 安庆师范大学学报(自然科学版). 2022(04): 24-28+36 . 百度学术
24. 施鑫,荣传新,王厚良,崔林钊. 地铁换乘站坑中坑支护方案优化分析. 建筑结构. 2022(S2): 2345-2350 . 百度学术
25. 张治国,张洋彬,张孟喜,赵其华,马伟斌. 考虑降雨因素影响的隧道施工扰动地层响应分析. 岩土工程学报. 2021(06): 1097-1108 . 本站查看
26. 郭海轮,谢卫兵. 超40 m深基坑施工变形及力学性能研究. 工程质量. 2021(S1): 98-103 . 百度学术
27. 毋远召,马文礼,魏占玺,董顺德. 降雨及渗流条件下层状砂质板岩边坡变形破坏模式研究. 河北工业科技. 2020(04): 230-236 . 百度学术
28. 崔林钊,牛犇,陈勇,荣传新,施鑫. 地铁换乘站坑中坑受力变形现场监测分析. 建筑结构. 2020(S2): 726-731 . 百度学术
29. 刘海林,符晓,余永飞,崔猛. 南昌地区基坑建设现状统计分析与思考. 河南城建学院学报. 2020(06): 60-66 . 百度学术
其他类型引用(27)