• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土边坡桩间水平土拱机理与演变规律离散元分析

王涛, 姬建

王涛, 姬建. 砂土边坡桩间水平土拱机理与演变规律离散元分析[J]. 岩土工程学报, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309
引用本文: 王涛, 姬建. 砂土边坡桩间水平土拱机理与演变规律离散元分析[J]. 岩土工程学报, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309
WANG Tao, JI Jian. DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309
Citation: WANG Tao, JI Jian. DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(8): 1742-1752. DOI: 10.11779/CJGE20230309

砂土边坡桩间水平土拱机理与演变规律离散元分析  English Version

基金项目: 

国家自然科学基金项目 U22A20594

国家自然科学基金项目 52079045

详细信息
    作者简介:

    王涛(1998—),男,博士研究生,主要从事边坡工程及可靠度分析方面的研究工作。E-mail: taowang53@163.com

    通讯作者:

    姬建, E-mail: ji0003an@e.ntu.edu.sg

  • 中图分类号: TU43

DEM analysis of mechanism and evolution of horizontal soil arching between piles in sand slopes

  • 摘要: 抗滑桩等非连续支挡结构在边坡工程中依靠土拱效应安全经济地发挥支护功能。鉴于不同类型砂土的力学性质差异较大,为揭示密砂与松砂土质边坡抗滑桩桩间水平土拱机理与演变规律,采用离散元方法(DEM)模拟支挡砂土水平土拱的成拱过程。在传统力链分析的基础上,提出通过筛选高应力颗粒来研究土拱的形成过程,进一步从细观角度对不同工况土拱效应进行分析,以揭示“应力拱”和“位移拱”的演化过程。研究表明:密砂和松砂中的水平土拱的动态演变过程均表现为3个演化阶段,分别对应于密砂和松砂的剪切性状,即应变软化和应变硬化现象,揭示了砂土边坡桩间土拱效应的演变规律。此外,讨论了宏-微观DEM模拟参数对土拱形成过程与土拱效应性能的影响,结果表明拱跨对于荷载传递效率的影响最大。
    Abstract: The non-continuous retaining structures such as anti-slide piles rely on the soil arching effects to provide support safely and economically in slope engineering. Considering the significant differences in the mechanical properties of sands, to reveal the mechanism and evolution patterns of horizontal soil arching between piles in sand slopes, the discrete element method (DEM) is used to simulate the formation process of horizontal soil arching. On the basis of the traditional force chain analysis, it is proposed to study the formation process of soil arching by screening high stress particles. Furthermore, the analysis of the soil arching effects under different conditions from a microscopic point of view is conducted to reveal the evolution process of "stress arching" and "displacement arching". The results demonstrate that the dynamic evolution of horizontal arching in both dense and loose sands can be divided into three evolutionary stages, corresponding to the shear behaviors of the two sands, i.e., strain softening and strain hardening phenomena, which reveals the evolution patterns of the soil arching effects in the sand slopes. Additionally, the influences of macro-micro DEM simulation parameters on the arching process and performance are discussed. The results indicate that the arching span has the greatest impact on the load transfer efficiency.
  • 图  1   分层压缩法成样步骤

    Figure  1.   Procedure of multi-layer method for generating specimen

    图  2   50 kPa围压下的砂土剪切性状及参数标定

    Figure  2.   Shear behaviours of sands under confining stress of 50 kPa and parameter calibration

    图  3   三维土拱效应问题的平面应变模型简化示意图

    Figure  3.   Simplified schematic diagram of soil arching from three-dimensional to plane strain model

    图  4   简化二维土拱模型

    Figure  4.   Simplified two-dimensional soil arching model

    图  5   应力十字分布

    Figure  5.   Distribution of stress cross

    图  6   拱跨中线上σxσy分布

    Figure  6.   Distribution of σx and σy along midline of arching span

    图  7   力链及高应力颗粒分布特征

    Figure  7.   Distribution features of contact force chains and high-stress particles

    图  8   土拱形成过程中的应力重分布和颗粒位移

    Figure  8.   Stress redistribution and particle displacement during formation of soil arching

    图  9   不同加载位移时拱跨中线上σx分布

    Figure  9.   Distribution of σx along midline of arching span at different loading displacements

    图  10   密砂与松砂的组构各向异性

    Figure  10.   Fabric anisotropy of dense and loose sands

    图  11   拱脚处的配位数

    Figure  11.   Coordination number at arching foot

    图  12   3组加载速度下的WtopFp演变

    Figure  12.   Evolution of Wtop and Fp under three loading velocities

    图  13   加载速度为2a/5·s-1时的端承拱和摩擦拱受力

    Figure  13.   Forces of end-bearing arching and friction arching at loading velocity of 2a/5·s-1

    图  14   加载速度为2a/5·s-1时荷载传递效率EA演变

    Figure  14.   Evolution of efficacy EA at loading velocity of 2a/5·s-1

    图  15   荷载传递效率EA小提琴图及其在不同加载速度下EA的变化曲线

    Figure  15.   Violin plot of arching efficiency EA and its variation curve under different loading velocities

    图  16   拱跨比对荷载传递效率EA和端承拱承担比(N/Fp)的影响

    Figure  16.   Influences of arching span ratio on arching efficacy EA and efficacy of end-bearing arching (N/Fp)

    图  17   50 kPa围压下的不同摩擦系数的砂土剪切性状

    Figure  17.   Shear behaviours of sands with different friction coefficients under confining stress of 50 kPa

    图  18   不同摩擦系数的推力Wtop和土拱荷载传递效率EA演变

    Figure  18.   Evolution of thrust Wtop and arching efficacy EA for different friction coefficients

    表  1   DEM模型的微观参数

    Table  1   Mesoscopic parameters of DEM model

    参数 法向刚度/
    (N·m-1)
    切向刚度/
    (N·m-1)
    摩擦系数 颗粒密度/
    (kg·m-3)
    最大粒径/
    mm
    最小粒径/ mm 平均粒径/ mm 孔隙度
    砂土(ball) 1.0×107 1.0×107 1.0 2500 1.2 0.5 0.78 0.25
    边界(wall) 1.0×1012 1.0×1012 0
    拱脚(wall) 1.0×109 1.0×109 5.0
    下载: 导出CSV
  • [1]

    TERZAGHI K V. The shearing resistance of saturated soils and the angle between the planes of shear[C]// First International Conference on Soil Mechanics, Cambridge, 1936.

    [2]

    LOW B, TANG S, CHOA V. Arching in piled embankments[J]. Journal of Geotechnical Engineering, 1994, 120(11): 1917-1938. doi: 10.1061/(ASCE)0733-9410(1994)120:11(1917)

    [3] 芮瑞, 黄成, 夏元友, 等. 砂填料桩承式路堤土拱效应模型试验[J]. 岩土工程学报, 2013, 35(11): 2082-2089. http://cge.nhri.cn/cn/article/id/15340

    RUI Rui, HUANG Cheng, XIA Yuanyou, et al. Model tests on soil arching effects of piled embankments with sand fills[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2082-2089. (in Chinese) http://cge.nhri.cn/cn/article/id/15340

    [4] 钟卫, 张帅, 贺拿. 基于相对变形方法的桩后土拱模型试验研究[J]. 岩土力学, 2022, 43(增刊2): 315-326. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2032.htm

    ZHONG Wei, ZHANG Shuai, HE Na. Experimental study on soil arch behind anti-slide pile based on relative deformation method[J]. Rock and Soil Mechanics, 2022, 43(S2): 315-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2022S2032.htm

    [5] 蒋明镜, 杜文浩, 奚邦禄. 净砂与胶结砂土Trapdoor试验离散元数值模拟[J]. 地球科学与环境学报, 2018, 40(3): 347-354. doi: 10.3969/j.issn.1672-6561.2018.03.011

    JIANG Mingjing, DU Wenhao, XI Banglu. Distinct element numerical simulation of trapdoor tests for pure and cemented sands[J]. Journal of Earth Sciences and Environment, 2018, 40(3): 347-354. (in Chinese) doi: 10.3969/j.issn.1672-6561.2018.03.011

    [6] 吕庆, 孙红月, 尚岳全. 抗滑桩桩后土拱形状及影响因素[J]. 哈尔滨工业大学学报, 2010, 42(4): 629-633. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201004028.htm

    LÜ Qing, SUN Hongyue, SHANG Yuequan. Shape of soil arch behind anti-slide piles and its major influence factors[J]. Journal of Harbin Institute of Technology, 2010, 42(4): 629-633. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201004028.htm

    [7]

    BOSSCHER P J, GRAY D H. Soil arching in sandy slopes[J]. Journal of Geotechnical Engineering, 1986, 112(6): 626-645. doi: 10.1061/(ASCE)0733-9410(1986)112:6(626)

    [8] 向先超, 张华, 蒋国盛, 等. 基于颗粒流的抗滑桩土拱效应研究[J]. 岩土工程学报, 2011, 33(3): 386-391. http://cge.nhri.cn/cn/article/id/13952

    XIANG Xianchao, ZHANG Hua, JIANG Guosheng, et al. Soil arching effect of anti-slide piles based on particle flow method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 386-391. (in Chinese) http://cge.nhri.cn/cn/article/id/13952

    [9]

    GENG Z, JIN D, YUAN D. Face stability analysis of cohesion-frictional soils considering the soil arch effect and the instability failure process[J]. Computers and Geotechnics, 2023, 153: 105050. doi: 10.1016/j.compgeo.2022.105050

    [10] 林治平, 刘祚秋, 商秋婷. 抗滑桩结构土拱的分拆与联合研究[J]. 岩土力学, 2012, 33(10): 3109-3114. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210038.htm

    LIN Zhiping, LIU Zuoqiu, SHANG Qiuting. Research on soil arch of anti-slide pile structure with methods of separation and combination[J]. Rock and Soil Mechanics, 2012, 33(10): 3109-3114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210038.htm

    [11] 蒋明镜. 现代土力学研究的新视野——宏微观土力学[J]. 岩土工程学报, 2019, 41(2): 195-254. doi: 10.11779/CJGE201902001

    JIANG Mingjing. New paradigm for modern soil mechanics: Geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 195-254. (in Chinese) doi: 10.11779/CJGE201902001

    [12]

    LI L, WU W, EL NAGGAR M H, et al. DEM analysis of the sand plug behavior during the installation process of open-ended pile[J]. Computers and Geotechnics, 2019, 109: 23-33. doi: 10.1016/j.compgeo.2019.01.014

    [13]

    JIANG M, KONRAD J, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597. doi: 10.1016/S0266-352X(03)00064-8

    [14]

    MINH N H, CHENG Y P. A DEM investigation of the effect of particle-size distribution on one-dimensional compression[J]. Géotechnique, 2013, 63(1): 44-53. doi: 10.1680/geot.10.P.058

    [15]

    JI J, WANG T, ZHANG T, et al. DEM analysis of dynamic evolutions of lateral soil arching in sandy soil[J]. Journal of Engineering Mechanics, 2023, 149(6): 04023033. doi: 10.1061/JENMDT.EMENG-7108

    [16]

    LAI H J, ZHENG J J, CUI M J, et al. "Soil arching" for piled embankments: insights from stress redistribution behaviour of DEM modelling[J]. Acta Geotechnica, 2020, 15(8): 2117-2136. doi: 10.1007/s11440-019-00902-x

    [17]

    TANG H, HU X, XU C, et al. A novel approach for determining landslide pushing force based on landslide-pile interactions[J]. Engineering Geology, 2014, 182: 15-24. doi: 10.1016/j.enggeo.2014.07.024

    [18] 尹小涛, 郑亚娜, 马双科. 基于颗粒流数值试验的岩土材料内尺度比研究[J]. 岩土力学, 2011, 32(4): 1211-1215. doi: 10.3969/j.issn.1000-7598.2011.04.043

    YIN Xiaotao, ZHENG Yana, MA Shuangke. Study of inner scale ratio of rock and soil material based on numerical tests of particle flow code[J]. Rock and Soil Mechanics, 2011, 32(4): 1211-1215. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.04.043

    [19]

    CHANG X, WANG Y T, ZHOU W, et al. The influence of rotational resistance on critical state of granular materials[C]// Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017.

    [20] 蒋明镜, 李秀梅, 胡海军. 含抗转能力散粒体的宏微观力学特性数值分析[J]. 计算力学学报, 2011, 28(4): 622-628. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201104024.htm

    JIANG Mingjing, LI Xiumei, HU Haijun. Numerical analysis of macro and micro mechanical properties of granular particles with anti-rotation capacity[J]. Chinese Journal of Computational Mechanics, 2011, 28(4): 622-628. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201104024.htm

    [21] 吕玺琳, 庞博, 朱长根, 等. 桩承式路堤桩土荷载分担特性物理模型试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 50-53. doi: 10.11779/CJGE2022S2011

    LÜ Xilin, PANG Bo, ZHU Changgen, et al. Physical model tests on load-sharing characteristics of piles and soils in pile-supported embankment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 50-53. (in Chinese) doi: 10.11779/CJGE2022S2011

图(18)  /  表(1)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 网络出版日期:  2024-08-11
  • 刊出日期:  2024-07-31

目录

    /

    返回文章
    返回