• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

加筋土桥台抗震性能影响因素试验研究

罗敏敏, 徐超, 陈赟, 杨阳, 梁程

罗敏敏, 徐超, 陈赟, 杨阳, 梁程. 加筋土桥台抗震性能影响因素试验研究[J]. 岩土工程学报, 2022, 44(S2): 215-219. DOI: 10.11779/CJGE2022S2047
引用本文: 罗敏敏, 徐超, 陈赟, 杨阳, 梁程. 加筋土桥台抗震性能影响因素试验研究[J]. 岩土工程学报, 2022, 44(S2): 215-219. DOI: 10.11779/CJGE2022S2047
LUO Min-min, XU Chao, CHEN Yun, YANG Yang, LIANG Cheng. Influence factors for seismic performance of bridge abutment with geosythetic-reinforced soil (GRS)[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 215-219. DOI: 10.11779/CJGE2022S2047
Citation: LUO Min-min, XU Chao, CHEN Yun, YANG Yang, LIANG Cheng. Influence factors for seismic performance of bridge abutment with geosythetic-reinforced soil (GRS)[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 215-219. DOI: 10.11779/CJGE2022S2047

加筋土桥台抗震性能影响因素试验研究  English Version

基金项目: 

国家自然科学基金项目 41772284

国家科技部重点专项项目 2016YFE0105800

详细信息
    作者简介:

    罗敏敏(1988—),男,博士,主要从事加筋土结构、环境岩土和基坑工程方面的研究。E-mail: zjluominmin@163.com

    通讯作者:

    杨阳, E-mail: 2011yang@tongji.edu.cn

  • 中图分类号: U443.2

Influence factors for seismic performance of bridge abutment with geosythetic-reinforced soil (GRS)

  • 摘要: 目前,关于加筋土桥台抗震性能的影响因素的研究工作主要偏重于数值分析,且未涉及对面层连接型式的影响研究。通过振动台缩尺模型试验研究水平地震作用下加筋间距、加筋长度、筋材刚度和面层连接型式等因素对加筋土桥台抗震性能的影响。研究结果表明,加速度响应和承载区中心下竖向土压力受加筋间距、加筋长度和筋材类型(包括筋材刚度和面层连接型式的不同)的影响很小。面层侧向位移和筋材应变受加筋间距的影响较大,加筋间距翻倍导致面层侧向位移和筋材应变成倍增长;加筋长度和筋材刚度的变化对面层侧向位移的影响则较小,对筋材应变的影响更小;面层连接型式则对面层侧向变形的模式有较大影响。各变量因素对面层侧向土压力的影响较小,影响规律不太明显。研究的变量因素中,加筋间距和面层连接型式对加筋土桥台的抗震性能的影响较大。
    Abstract: Currently, most researches on the seismic performance of bridge abutment with geosythetic-reinforced soil (GRS) and the related influence factors focuses on the numerical analysis, among which the connecting pattern between the reinforcement and the facing system is rarely studied. To solve this issue, a series of shaking table tests are performed to investigate the seismic behaviors of bridge abutment with GRS under horizontal earthquakes with special attention paid on the reinforcement conditions including spacing, length, stiffness and connecting patterns. According to the test results, it is found that the acceleration response and the vertical earth pressure under the load-bearing area are scarcely influenced by the reinforcement conditions as mentioned above. The lateral displacement of the facing and the tensile strain of the reinforcement are obviously affected by the reinforcement spacing, e.g., significant increases in the lateral displacement of facing and tensile strain of reinforcement are noticed under a doubled reinforcement spacing. On the other hand, the length and stiffness of reinforcement have small effects on the lateral displacement of facing as well as the tensile strain of reinforcement. A marked effect is observed in the distribution of the lateral deformation of facing for different connecting patterns between the reinforcement and the facing system. In addition, the influences caused to the lateral earth pressure behind the facing are found to be small. To conclude, among the evaluated factors, a greater influence is observed in the spacing of reinforcement and the connection pattern of reinforcement-facing system on the seismic performance of the bridge abutment with GRS.
  • 图  1   试验模型纵断面图

    Figure  1.   Profile of test model

    图  2   本文所用工况的施加地震波的时程曲线

    Figure  2.   Time histories of earthquake motion

    图  3   平均峰值加速度放大系数的对比

    Figure  3.   Comparison of amplification factors of average peak acceleration

    图  4   面层残余位移对比

    Figure  4.   Comparison of residual lateral displacements of facing

    图  5   面层侧向峰值土压力对比

    Figure  5.   Comparison of peak lateral earth pressures

    图  6   竖向峰值土压力对比

    Figure  6.   Comparison of peak vertical stresses

    图  7   筋材峰值应变的对比

    Figure  7.   Comparison of peak strains of reinforcement

    表  1   模型试验方案

    Table  1   Plans of model tests

    试验编组 加筋间距
    Sv /m
    加筋长度
    Lr
    筋材类型 筋材强度
    Tf/(kN·m-1)
    A 0.05 0.7 Ha 土工格栅 5
    B 0.10 0.7 Ha 土工格栅 10
    C 0.05 1.0 Ha 土工格栅 5
    D 0.05 0.7 Ha 牛皮纸 5
    注:筋材类型的改变,本质上是筋材刚度和面层连接型式的改变。
    下载: 导出CSV

    表  2   试验用筋材的主要力学性质参数

    Table  2   Main mechanical properties of reinforcements

    筋材类型 120 g
    牛皮纸
    未处理
    格栅
    剪肋
    格栅
    极限拉伸强度/(kN·m-1) 5 10 5
    2%伸长率时拉伸强度/(kN·m-1) 5 3.4 1.6
    2%伸长率时筋材刚度/(kN·m-1) 320 170 80
    下载: 导出CSV
  • [1]

    WU J, KETCHART K, ADAMS M. Two full-scale loading experiments of geosynthetic-reinforced soil (GRS) abutment wall[J]. International Journal of Geotechnical Engineering, 2008, 2(4): 305–317. doi: 10.3328/IJGE.2008.02.04.305-317

    [2]

    KELLER G R, DEVIN S C. Geosynthetic-reinforced soil bridge abutments[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1819(1): 362–368. doi: 10.3141/1819b-46

    [3] 罗敏敏, 徐超, 杨子凡. 土工合成材料加筋土柔性桥台复合结构及应用[J]. 土木工程学报, 2019, 52(增刊1): 226–232. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1029.htm

    LUO Min-min, XU Chao, YANG Zi-fan. Geosynthetic reinforced soil-integrated bridge system and its applications[J]. China Civil Engineering Journal, 2019, 52(S1): 226–232. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2019S1029.htm

    [4]

    YAZDANDOUST M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 216–232. doi: 10.1016/j.soildyn.2017.03.011

    [5]

    KOERNER R M, KOERNER G R. An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2018, 46(6): 904–912. doi: 10.1016/j.geotexmem.2018.07.013

    [6]

    HELWANY S, WU J T H, MEINHOLZ P, et al. Seismic behavior of GRS bridge abutments with concrete block facing: an experimental study[J]. Transportation Infrastructure Geotechnology, 2017, 4(4): 85–105. doi: 10.1007/s40515-017-0040-z

    [7]

    ZHENG Y, MCCARTNEY J S, SHING P B, et al. Transverse shaking table test of a half-scale geosynthetic reinforced soil bridge abutment[J]. Geosynthetics International, 2018, 25(6): 582–598. doi: 10.1680/jgein.18.00019

    [8]

    ZHENG Y, MCCARTNEY J S, SHING P B, et al. Physical model tests of half-scale geosynthetic reinforced soil bridge abutments. ii: dynamic loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11): 04019095. doi: 10.1061/(ASCE)GT.1943-5606.0002158

    [9]

    XU C, LUO M, SHEN P, et al. Seismic performance of a whole geosynthetic reinforced soil – integrated bridge system(GRS-IBS) in shaking table test[J]. Geotextiles and Geomembranes, 2020, 48(3): 315–330. doi: 10.1016/j.geotexmem.2019.12.004

    [10] 徐超, 罗敏敏, 任非凡, 等. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(增刊1): 179–186. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1021.htm

    XU Chao, LUO Min-min, REN Fei-fan, et al. Experimental study on seismic behaviour of reinforced soil flexible abutment composite structures[J]. Rock and Soil Mechanics, 2020, 41(S1): 179–186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1021.htm

    [11]

    GHADERI R, HELWANY S, WU J T H, et al. Seismic behavior of geosynthetic reinforced soil(GRS) bridge abutments with concrete block facing: an analytical study[J]. Transportation Infrastructure Geotechnology, 2017, 4(2): 52–83.

  • 期刊类型引用(25)

    1. 张志哺. 干湿-冻融循环下公路切坡玄武岩力学特性及损伤机制研究. 公路. 2025(03): 41-49 . 百度学术
    2. 黄彦华,李明旭,武世岩,杨超. 基于连续-离散耦合方法的边坡稳定性模拟研究. 中南大学学报(自然科学版). 2025(04): 1502-1513 . 百度学术
    3. 张科,李娜. 干湿循环作用下岩桥破裂演化及前兆异常定量识别研究. 工程地质学报. 2024(01): 64-73 . 百度学术
    4. 刘帅,杨更社,潘振兴. 冻融环境下“三段式”岩质边坡锁固段损伤破坏及灾变机制研究. 岩石力学与工程学报. 2024(11): 2781-2795 . 百度学术
    5. 黎俊华. 基于极限平衡法的边坡稳定性分析. 采矿技术. 2023(01): 39-44 . 百度学术
    6. 王建明,崔新男,陈忠辉,陈冲. 露天矿含后缘裂隙岩质边坡岩体卸荷断裂机理与稳定性研究. 岩土工程学报. 2023(02): 345-353 . 本站查看
    7. 郭朋瑜,闫兴田,吉锋,易林立. 四川茂县新磨村滑坡启动机制物理模拟试验研究. 工程地质学报. 2023(01): 154-164 . 百度学术
    8. 林之岳,黎俊华,王道林. 基于爆破振速演变规律的采场安全分析. 黄金. 2023(03): 5-11 . 百度学术
    9. 冷先伦,王川,盛谦,宋文军,陈健,张占荣,陈菲. 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究. 岩土力学. 2023(05): 1283-1294+1308 . 百度学术
    10. 冉孟坤,韦港荣,熊春发,卢超波,秦梓航. 广西某高速公路基于切线角理论的隧道变形监测预警应用研究. 四川地质学报. 2023(02): 302-306+312 . 百度学术
    11. 刘先林,范杰,朱觉文,李明智,朱星. 单轴压缩下岩桥脆性断裂的临界慢化特征. 水利水电技术(中英文). 2022(03): 166-175 . 百度学术
    12. 朱星,唐垚. 锁固段边坡模型破坏前兆特征. 地球科学. 2022(06): 1957-1968 . 百度学术
    13. 杨泓全,范杰,黄成年,刘先林,朱星. 中部锁固岩桥脆性断裂特征试验研究. 科学技术与工程. 2022(15): 6255-6263 . 百度学术
    14. 杨奎斌,朱彦鹏. 考虑后缘裂缝影响的均质土坡滑动面形式及搜索研究. 应用基础与工程科学学报. 2022(05): 1216-1227 . 百度学术
    15. 王闯,董金玉,刘汉东,黄志全,赵亚文,杨兴隆. 三段式锁固型岩质边坡动力响应特性及破坏机制振动台模型试验研究. 地球科学. 2022(12): 4428-4441 . 百度学术
    16. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    17. 陈永峰,张海东,赵广臣. 不同加载速率下端部节理岩桥变形破坏及裂隙扩展试验研究. 长江科学院院报. 2021(07): 66-72 . 百度学术
    18. 张海东,陈永峰,赵广臣,张清华. 单轴压缩下预制端部节理岩桥变形破坏及裂隙扩展机制研究. 煤矿安全. 2021(09): 78-84 . 百度学术
    19. 范杰,朱星,霍冬冬,胡桔维,刘俊峰. 基于数字图像相关和声发射的岩质锁固段破坏试验研究. 科学技术与工程. 2021(36): 15581-15590 . 百度学术
    20. 李巧刚,张树东,吴斌. 矿区大型滑坡体力学机理及地质演化模式研究. 煤炭科学技术. 2020(03): 214-220 . 百度学术
    21. 乔趁,李长洪,王宇,颜丙乾. 冻融循环作用下中部锁固岩桥破坏试验研究. 岩石力学与工程学报. 2020(06): 1094-1103 . 百度学术
    22. 王建明,陈忠辉,周子涵,陈帅,孙小欢. 不同卸荷速率下节理岩桥变形破坏及裂隙扩展演化试验研究. 矿业科学学报. 2020(04): 382-392 . 百度学术
    23. 袁新华. 单轴压缩下中部锁固岩桥变形破坏模式及演化机制研究. 中国安全生产科学技术. 2020(09): 116-121 . 百度学术
    24. 李冬冬,刘汉东. 风脉寺滑坡前缘阻滑体不同产状稳定性研究. 华北水利水电大学学报(自然科学版). 2018(06): 8-12 . 百度学术
    25. 姜彤,雷家华. 基于图像相关分析的锁固型滑坡模型试验方法. 华北水利水电大学学报(自然科学版). 2018(06): 41-45 . 百度学术

    其他类型引用(32)

图(7)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 57
出版历程
  • 收稿日期:  2022-11-30
  • 网络出版日期:  2023-03-26
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回