• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

软土地区桩承式加筋路堤力学行为现场试验研究

杨广庆, 王昕, 王锡朝, 靳进钊, 张超

杨广庆, 王昕, 王锡朝, 靳进钊, 张超. 软土地区桩承式加筋路堤力学行为现场试验研究[J]. 岩土工程学报, 2022, 44(11): 2089-2096. DOI: 10.11779/CJGE202211015
引用本文: 杨广庆, 王昕, 王锡朝, 靳进钊, 张超. 软土地区桩承式加筋路堤力学行为现场试验研究[J]. 岩土工程学报, 2022, 44(11): 2089-2096. DOI: 10.11779/CJGE202211015
YANG Guang-qing, WANG Xin, WANG Xi Zhao, JIN Jin Zhao, ZHANG Chao. Field tests on mechanical behavior of pile-supported embankment in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2089-2096. DOI: 10.11779/CJGE202211015
Citation: YANG Guang-qing, WANG Xin, WANG Xi Zhao, JIN Jin Zhao, ZHANG Chao. Field tests on mechanical behavior of pile-supported embankment in soft soil area[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(11): 2089-2096. DOI: 10.11779/CJGE202211015

软土地区桩承式加筋路堤力学行为现场试验研究  English Version

基金项目: 

国家自然科学基金项目 52079078

河北省重点研发计划项目 20375504D

河北省交通运输厅科技项目 RW-202014

详细信息
    作者简介:

    杨广庆(1971—),男,教授,博士,博士生导师,主要从事路基工程力学行为控制与耐久性提升研究。E-mail: yanggq@stdu.edu.cn

    通讯作者:

    王昕, E-mail: wangx@stdu.edu.cn

  • 中图分类号: TU472

Field tests on mechanical behavior of pile-supported embankment in soft soil area

  • 摘要: 依托现场试验,研究了桩间距和垫层形式对高速公路桩承式加筋路堤力学行为的影响。通过埋设测试元件,对路堤中心线、中心线右侧10 m、路肩垂线对应位置的桩顶土压力、桩间土应力以及土工格栅变形进行了监测,分析了桩、土应力变化规律、路基横断面荷载变化规律以及路基横断面土工格栅筋材变形规律。研究结果表明:路堤临界高度为1~1.5倍桩净间距;以路堤中心线开始向路肩方向,应力折减系数逐渐增大,应力集中效应逐渐减小;以路堤中心线开始向路肩方向,土工格栅变形量逐渐减小;桩承式路堤的荷载转移以土拱效应为主,拉膜效应为辅;将试验结果与5种理论方法的计算结果进行比较,评价了各种方法的适用性。
    Abstract: Based on the field tests, the influences of pile spacing and reinforcement form on the mechanical behavior of pile-supported reinforced embankment are studied. The soil pressures at the top of the pile, the soil stresses between the piles and the deformations of the geogrid at the center line of embankment, 10 m to the right of the center line and shoulder vertical line, are monitored. The variation of stresses of piles and soil, the variation of loads on cross section of subgrade and the deformation laws of geogrid of cross section of subgrade are analyzed. The results show that the critical height of embankment is 1~1.5 times the net spacing of piles. From the embankment center line to the shoulder direction, the stress reduction coefficient increases gradually, and the stress concentration effect decreases gradually. From the embankment center line to the shoulder direction, the deformation of geogrid decreases gradually. The load transfer of pile-supported embankment is mainly based on soil arching effect and supplemented by membrane effect. The test results are compared with the calculated ones of five theoretical methods to evaluate the applicability of the five methods.
  • 图  1   地基土层分布示意图

    Figure  1.   Distribution of soil layers of foundation

    图  2   监测元件布置示意图

    Figure  2.   Schematic diagram of monitoring element

    图  3   土压力随路堤填筑高度的变化曲线

    Figure  3.   Curves of earth pressure with embankment height

    图  4   各测试断面桩土应力比与路堤高度的关系曲线

    Figure  4.   Curves of pile-soil stress ratio with embankment height

    图  5   各测试断面荷载分担比与路堤高度的关系曲线

    Figure  5.   Curves of load sharing ratio with embankment height

    图  6   各测试断面桩、土应力沿路基横断面的分布

    Figure  6.   Stress distribution of piles and soil along embankment cross section

    图  7   横断面不同位置应力折减系数与路堤高度的关系曲线

    Figure  7.   Curves of stress reduction coefficient

    图  8   路基横断面不同位置土工格栅应变随时间的变化曲线

    Figure  8.   Curves of geogrid deformation with time of each test section

    图  9   荷载分担比计算值与实测值的比较

    Figure  9.   Load sharing ratios between calculated and measured values

    表  1   试验断面土层工程性质

    Table  1   Engineering properties of soil layers in test section

    层序号 岩土名称 主要物理指标 主要力学指标
    含水率ω/% 重度γ
    /(kN·m-3)
    孔隙比e 液限ωL/% 塑限
    ωp/%
    塑性指数Ip/% 液性指数IL 压缩系数av1-2
    /(MPa-1)
    压缩模量Es1-2/MPa 黏聚力c/kPa 内摩擦角φ/(°)
    1 粉质黏土 24.9 19.2 0.778 32.2 18.8 13.4 0.44 0.32 6.3 24.5 13.8
    3 粉质黏土 33.4 18.2 1.007 37.9 21.4 16.5 0.74 0.45 4.5 24.8 11.4
    1 粉土 21.2 19.1 0.718 26.2 17.4 8.8 0.43 0.23 8.7 11.5 20.8
    粉质黏土 24.2 19.6 0.737 31.2 18.7 12.5 0.43 0.31 5.9 24.7 12.9
    3 粉质黏土 35.4 18.4 1.018 39.4 22.5 16.9 0.77 0.50 4.2 22.6 41.1
    3 粉质黏土 33.5 18.9 0.932 37.2 21.5 15.7 0.77 0.47 4.1 18.5 15.5
    1 粉质黏土 24.1 20.0 0.691 30.5 18.0 12.5 0.47 0.33 5.8 26.7 15.5
    粉土 19.8 20.4 0.588 25.8 16.6 9.2 0.35 0.23 8.8 12.8 21.3
    下载: 导出CSV

    表  2   试验断面状况

    Table  2   Conditions of test cross section

    断面编号 断面里程 地基处理方法 垫层厚度/m 路堤高度/m 桩长/m 桩径/m 桩间距/m
    K42+450 预应力管桩+垫层 0.3 7.2 14 0.4 2.0
    K42+470 预应力管桩+垫层 0.3 7.3 14 0.4 2.2
    K42+950 预应力管桩+双向土工格栅+垫层 0.3 5.3 14 0.4 2.0
    K42+970 预应力管桩+双向土工格栅+垫层 0.3 5.1 14 0.4 2.2
    下载: 导出CSV

    表  3   临界高度计算方法

    Table  3   Method for calculating critical height

    规范名称 理论依据 临界高度 备注
    英国规范BS 8006[9] Marston等沉面模型和H & R半球拱模型 1.4(s-a S为桩间距,A为桩帽宽度,Sd为相邻对角桩的桩间距
    德国规范EBGEO[11] Zeaske & Kempfert的多拱模型 0.7Sd
    中国规范JTG/T D31—02—2013[13] 陈云敏改进的H & R模型 1.4(s-a
    北欧设计指南Nordic[15] Carlsson的楔形体土拱模型 1.2(s-a
    下载: 导出CSV

    表  4   各试验断面桩间土应力

    Table  4   Soil stresses between piles of each test section

    路堤填高
    /m
    断面 Ps/kPa 增幅/%
    路基中心 中心右侧10 m处 路肩
    2 19 19 22 16
    21 25 28 33
    15 17 18 20
    17 19 20 18
    4 36 40 41 14
    36 41 48 33
    29 31 33 14
    31 32 35 13
    下载: 导出CSV
  • [1] 芮瑞, 万亿, 陈成, 等. 加筋对桩承式路堤变形模式与土拱效应影响试验[J]. 中国公路学报, 2020, 33(1): 41–50. doi: 10.3969/j.issn.1001-7372.2020.01.004

    RUI Rui, WAN Yi, CHEN Cheng, et al. Experimental investigation on influences of geosynthetic reinforcement on deformation pattern and soil arching in piled embankments[J]. China Journal of Highway and Transport, 2020, 33(1): 41–50. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.01.004

    [2] 陈庚, 陈永辉, 徐锴, 等. 桩承式加筋路堤土拱效应现场试验[J]. 长安大学学报(自然科学版), 2016, 36(4): 41–47. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201604006.htm

    CHEN Geng, CHEN Yong-hui, XU Kai, et al. Field test on soil arching in pile-supported reinforced embankment[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(4): 41–47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201604006.htm

    [3] 徐超, 宋世彤. 桩承式加筋路堤土拱效应的缩尺模型试验研究[J]. 岩石力学与工程学报, 2015, 34(增刊2): 4343–4350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2085.htm

    XU Chao, SONG Shi-tong. Scaled model tests of soil arching effect in geosynthetic reinforced and pile supported embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 4343–4350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2085.htm

    [4] 费康, 陈毅, 王军军. 桩承式路堤土拱效应发挥过程研究[J]. 岩土力学, 2013, 34(5): 1367–1374. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305021.htm

    FEI Kang, CHEN Yi, WANG Jun-jun. Study of development of soil arching effect in piled embankment[J]. Rock and Soil Mechanics, 2013, 34(5): 1367–1374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305021.htm

    [5] 费康, 王军军, 陈毅. 桩承式路堤土拱效应的试验和数值研究[J]. 岩土力学, 2011, 32(7): 1975–1983. doi: 10.3969/j.issn.1000-7598.2011.07.010

    FEI Kang, WANG Jun-jun, CHEN Yi. Experimental and numerical studies of soil arching in piled embankment[J]. Rock and Soil Mechanics, 2011, 32(7): 1975–1983. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.010

    [6] 夏元友, 芮瑞. 刚性桩加固软土路基竖向土拱效应的试验分析[J]. 岩土工程学报, 2006, 28(3): 327–331. doi: 10.3321/j.issn:1000-4548.2006.03.009

    XIA Yuan-you, RUI Rui. Experimental analysis of vertical soil arching effect of embankment reinforced by rigid piles[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 327–331. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.03.009

    [7]

    MARSTON A, ANDERSON A O. The theory of loads on pipes in ditches and tests of cement and clay drain tile and sewer pipe[R]. Bulletin: IA Engineering Experimental Station, Iowa State College, Ames IA, 1913.

    [8]

    HEWLETT W J, RANDOLPH M F. Analysis of piled embankment [J]. Ground Engineering, 1988, 21(3): 12–18

    [9]

    British Standard. BS 8006-1: 2010 Code of practice for strengthened/reinforced soils and other fills[S]. 2010.

    [10]

    ZAESKE D, KEMPFERT H G. Calculation and mechanism of unreinforced and reinforced base layers on point and line-shaped support members[J]. Civil Engineer, 2002, 77(S0): 80–86.

    [11]

    EBGEO 2010 Recommendations for design and analysis of earth structures using geosynthetic reinforcements[S]. Berlin: German Geotechnical Society, 2010.

    [12] 陈云敏, 贾宁, 陈仁朋. 桩承式路堤土拱效应分析[J]. 中国公路学报, 2004, 17(4): 1–6. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201002.htm

    CHEN Yun-min, JIA Ning, CHEN Ren-peng. Soil arch analysis of pile-supported embankments[J]. China Journal of Highway and Transport, 2004, 17(4): 1–6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201201002.htm

    [13] 公路软土地基路堤设计与施工技术细则: JTG/T D31—02—2013[S]. 2013.

    Technical Guidelines for Design and Construction of Highway Embankment on Soft Ground: JTG/T D31—02—2013[S]. 2013. (in Chinese)

    [14]

    CARLSSON B. Reinforced Soil, Principles for Calculation[M]. Swedish: Terratema AB, Linöping, 1987.

    [15] Nordic Geotechnical Group. Nordic Guidelines for Reinforced Soils and FillS[M]. Stockholm: Nordic Geotechnical Group, 2004
    [16]

    VAN EEKELEN S J M, BEZUIJEN A, VAN TOL A F. An analytical model for arching in piled embankments[J]. Geotextiles and Geomembranes, 2013, 39: 78–102.

    [17] 郑俊杰, 曹文昭, 董同新, 等. 中低压缩性土地区桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2015, 37(9): 1549–1555. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509002.htm

    ZHENG Jun-jie, CAO Wen-zhao, DONG Tong-xin, et al. Experimental investigation of geogrid- reinforced and pile-supported embankment on soils with medium-low compressibility[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1549–1555. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509002.htm

    [18] 郑俊杰, 张军, 马强, 等. 路桥过渡段桩承式加筋路堤现场试验研究[J]. 岩土工程学报, 2012, 34(2): 355–362. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm

    ZHENG Jun-jie, ZHANG Jun, MA Qiang, et al. Experimental investigation of geogrid-reinforced and pile-supported embankment at bridge approach[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(2): 355–362. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202030.htm

    [19] 高成雷, 凌建明, 杜浩, 等. 拓宽路堤下带帽刚性疏桩复合地基应力特性现场试验研究[J]. 岩石力学与工程学报, 2008, 27(2): 354–360. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802022.htm

    GAO Cheng-lei, LING Jian-ming, DU Hao, et al. In-situ test on stress characteristics of composite foundation with sparse t-shaped rigid piles under widening embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 354–360. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200802022.htm

    [20] 胡启军, 谢强, 卿三惠. 加筋碎石垫层中双层土工格栅拉力特性试验研究[J]. 岩土力学, 2007, 28(4): 799–802. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200704031.htm

    HU Qi-jun, XIE Qiang, QING San-hui. Field study of tensile force character of double-layered geogrid in reinforced gravel cushion[J]. Rock and Soil Mechanics, 2007, 28(4): 799–802. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200704031.htm

    [21] 陈福全, 李阿池, 吕艳平. 桩承式路堤中土拱效应的改进Hewlett算法[J]. 岩石力学与工程学报, 2007, 26(6): 1278–1283. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706026.htm

    CHEN Fu-quan, LI A-chi, LU Yan-ping. An improved solution of hewlett's method for soil arching effect on piled embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1278–1283. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200706026.htm

    [22]

    CHEN Y M, CAO W P, CHEN R P. An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments[J]. Geotextiles and Geomembranes, 2008, 26(2): 164–174.

    [23] 崔晓艳, 庄妍, 肖衡林, 等. 桩承式路堤中土拱效应可视化模型试验研究[J]. 岩石力学与工程学报, 2020, 39(增刊1): 3150–3158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1057.htm

    CUI Xiao-yan, ZHUANG Yan, XIAO Heng-lin, et al. Investigation on soil arching effect in visual model test of pile-supported embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 3150–3158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S1057.htm

    [24] 鲍宁, 魏静, 陈建峰. 桩承式路堤土拱效应三维离散元分析[J]. 岩土力学, 2020, 41(增刊1): 347–354. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1040.htm

    BAO Ning, WEI Jing, CHEN Jian-feng. Three dimensional discrete element analysis of soil arching in piled embankment[J]. Rock and Soil Mechanics, 2020, 41(S1): 347–354. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2020S1040.htm

图(9)  /  表(4)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  24
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回