• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

宽饱和度范围非饱和粗细混合土的强度演化规律:试验现象

赵煜鑫, 张禄乾, 李旭, 赵红芬

赵煜鑫, 张禄乾, 李旭, 赵红芬. 宽饱和度范围非饱和粗细混合土的强度演化规律:试验现象[J]. 岩土工程学报, 2023, 45(11): 2278-2288. DOI: 10.11779/CJGE20220963
引用本文: 赵煜鑫, 张禄乾, 李旭, 赵红芬. 宽饱和度范围非饱和粗细混合土的强度演化规律:试验现象[J]. 岩土工程学报, 2023, 45(11): 2278-2288. DOI: 10.11779/CJGE20220963
ZHAO Yuxin, ZHANG Luqian, LI Xu, ZHAO Hongfen. Unsaturated shear strength characteristics of coarse-fine mixed soils in a wide range of degree of saturation: experimental phenomena[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2278-2288. DOI: 10.11779/CJGE20220963
Citation: ZHAO Yuxin, ZHANG Luqian, LI Xu, ZHAO Hongfen. Unsaturated shear strength characteristics of coarse-fine mixed soils in a wide range of degree of saturation: experimental phenomena[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2278-2288. DOI: 10.11779/CJGE20220963

宽饱和度范围非饱和粗细混合土的强度演化规律:试验现象  English Version

基金项目: 

国家自然科学基金项目 51979002

国家自然科学基金项目 52279121

详细信息
    作者简介:

    赵煜鑫(1995—),男,博士研究生,主要从事非饱和土力学方面的研究工作。E-mail: yuxinzhao@bjtu.edu.cn

    通讯作者:

    李旭, E-mail: xuli@bjtu.edu.cn

  • 中图分类号: TU443

Unsaturated shear strength characteristics of coarse-fine mixed soils in a wide range of degree of saturation: experimental phenomena

  • 摘要: 粗细混合土是自然界和工程中普遍存在的土体类型,其强度对边坡、基坑、挡土墙等岩土工程稳定性至关重要。然而粗细混合土的强度在宽饱和度范围内的演化规律不明,尤其是缺少低饱和度时的试验数据和演化规律。为了阐明粗细混合土强度随饱和度变化的一般规律,采用室内直剪试验研究了7种不同细粒含量的粗细混合土的强度与变形特性。试验结果表明:①在宽饱和度范围内,由于毛细作用和吸附作用对抗剪强度贡献不同,非饱和粗细混合土的抗剪强度随饱和度的变化普遍存在“山峰效应”,即在非饱和残余区内出现了强度极大值,其强度随饱和度或吸力的演化规律可以划分为缓慢增长区、快速上升区和峰后下降区3个阶段。②当饱和度低于残余饱和度时,非饱和土的剪切破坏还出现了典型的脆性破坏特征。③粗细混合土的强度变形特征与细粒含量密切相关,随着细粒含量的增加,土骨架由粗颗粒控制逐渐转变为细粒控制,非饱和强度最大值所对应的细粒含量为50%~80%。
    Abstract: The coarse-fine mixed soils are widely distributed in natural and geotechnical engineering practices. Their strength is vital to the stability of geotechnical engineering (e.g., slopes, foundation pits and retaining walls). However, the unsaturated shear strength characteristics of the coarse-fine mixed soils are not evident in a wide range of degree of saturation (Sr), especially the lack of experimental data in the low range of Sr. In order to clarify the general rules that the unsaturated shear behaviors of the coarse-fine mixed soils in the full range of Sr, a series of direct shear tests are carried out on seven unsaturated coarse-fine mixed soils to study the unsaturated shear strength and deformation characteristics. The test results show that: (1) Based on the contribution of capillary water and adsorbed water to the unsaturated shear strength, the unsaturated shear strength exhibits a "peak behavior", where the shear strength reaches its peak at the residual zone, the shear strength characteristics with Sr or suction can be divided into three stages: slow growth zone, rapid rise zone and post-peak decline zone. (2) Brittle failure occurs when Sr is lower than the residual saturation. (3) The fines content (FC) significantly affects the strength and deformation characteristics of the coarse-fine mixed soils. As FC increases, the soil microstructure changes from a fines-controlled to a coarse-controlled structure. The FC corresponding to the maximum unsaturated strength is between 50%~80%.
  • 图  1   试验用土的颗粒级配曲线

    Figure  1.   Grain-size distribution curves of test soils

    图  2   不同FC粗细混合土的试样照片

    Figure  2.   Photos of coarse-fine mixed soils with different FCs

    图  3   土-水特征曲线

    Figure  3.   Soil-water characteristic curves

    图  4   粗细混合土的强度试验结果(FC=36%, σv=100 kPa)

    Figure  4.   Results from direct shear tests on coarse-fine mixed soils (FC=36%, σv=100 kPa)

    图  5   低饱和度非饱和土的脆性破坏特征(FC=100%)

    Figure  5.   Brittle failure of unsaturated soils with low degree of saturation (FC=100%)

    图  6   脆性指数IB的局限性[20]

    Figure  6.   Sketch for limitation of brittleness index IB[20]

    图  7   不同FC粗细混合土的脆性指数随饱和度变化规律

    Figure  7.   Variation of law of brittleness index with degree of saturation

    图  8   非饱和土的脆性破坏和塑性破坏特征描述

    Figure  8.   Brittle and plastic failure characteristics

    图  9   不同FC混合土体的剪胀角比较

    注:图 9和图 11中的饱和度取平行土样初始饱和度的平均值。

    Figure  9.   Dilation angles of coarse-fine mixed soils

    图  10   非饱和强度随饱和度和吸力的变化规律

    Figure  10.   Variation of unsaturated strength with degree of saturation and suction

    图  11   不同FC下粗细混合土的强度对比

    Figure  11.   Comparison of shear strengths of coarse-fine mixed soils

    图  12   不同类型土的强度随饱和度和吸力的变化规律

    Figure  12.   Variation of shear strength of different types of soils with saturation and suction

    图  13   不同类型非饱和土强度特性示意图[30]

    Figure  13.   Types of shear strength for unsaturated soils[30]

    表  1   粗细混合土的制样干密度和含水率

    Table  1   Dry densities and water contents of test soils

    FC/% 16 24 36 50 65 80 100
    ρd/(g·cm-3) 1.89 1.94 2.04 2.00 1.94 1.81 1.68
    wopt/% 6.7 7.5 8.8 10.3 11.8 13.4 15.5
    下载: 导出CSV

    表  2   土-水特征曲线的主要参数

    Table  2   Main parameters of soil-water characteristic curves

    FC/% ψa/kPa ψr/kPa Sre/%
    16 2.5 9.0 15.8
    24 6.2 98.6 14.4
    36 8.5 450.0 14.3
    50 16.0 700.0 15.5
    65 16.6 750.0 15.6
    80 20.0 1000.0 14.6
    100 25.0 1300.0 14.6
    注:ψa为进气值,ψr为残余值,Sre为残余饱和度。
    下载: 导出CSV
  • [1] 詹良通, 李鹤, 陈云敏, 等. 东南沿海残积土地区降雨诱发型滑坡预报雨强-历时曲线的影响因素分析[J]. 岩土力学, 2012, 33(3): 872-880, 886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201203036.htm

    ZHAN Liangtong, LI He, CHEN Yunmin, et al. Parametric analyses of intensity-duration curve for predicting rainfall-induced landslides in residual soil slope in Southeastern coastal areas of China[J]. Rock and Soil Mechanics, 2012, 33(3): 872-880, 886. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201203036.htm

    [2]

    ZHAO H F, ZHANG L M, FREDLUND D G. Bimodal shear-strength behavior of unsaturated coarse-grained soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2070-2081. doi: 10.1061/(ASCE)GT.1943-5606.0000937

    [3]

    ZHAO H F, ZHANG L M. Effect of coarse content on shear behavior of unsaturated coarse granular soils[J]. Canadian Geotechnical Journal, 2014, 51(12): 1371-1383. doi: 10.1139/cgj-2012-0292

    [4]

    ZHOU A N, HUANG R Q, SHENG D C. Capillary water retention curve and shear strength of unsaturated soils[J]. Canadian Geotechnical Journal, 2016, 53(6): 974-987. doi: 10.1139/cgj-2015-0322

    [5]

    LEE I M, SUNG S G, CHO G C. Effect of stress state on the unsaturated shear strength of a weathered granite[J]. Canadian Geotechnical Journal, 2005, 42(2): 624-631. doi: 10.1139/t04-091

    [6]

    HOSSAIN M A, YIN J H. Behavior of a compacted completely decomposed granite soil from suction controlled direct shear tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 189-198. doi: 10.1061/(ASCE)GT.1943-5606.0000189

    [7] 孙德安, 徐钱垒, 陈波, 等. 广吸力范围内非饱和原状黄土的力学特性[J]. 岩土工程学报, 2020, 42(9): 1586-1592. doi: 10.11779/CJGE202009002

    SUN Dean, XU Qianlei, CHEN Bo, et al. Mechanical behavior of unsaturated intact loess over a wide suction range[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1586-1592. (in Chinese) doi: 10.11779/CJGE202009002

    [8]

    ZHANG J R, SUN D A, ZHOU A N, et al. Hydromechanical behaviour of expansive soils with different suctions and suction histories[J]. Canadian Geotechnical Journal, 2016, 53(1): 1-13. doi: 10.1139/cgj-2014-0366

    [9]

    NG C W W, SADEGHI H, JAFARZADEH F. Compression and shear strength characteristics of compacted loess at high suctions[J]. Canadian Geotechnical Journal, 2017, 54(5): 690-699. doi: 10.1139/cgj-2016-0347

    [10]

    PATIL U D, PUPPALA A J, HOYOS L R, et al. Modeling critical-state shear strength behavior of compacted silty sand via suction-controlled triaxial testing[J]. Engineering Geology, 2017, 231: 21-33. doi: 10.1016/j.enggeo.2017.10.011

    [11] 高游. 广吸力范围内非饱和土的土水和力学特性研究[D]. 上海: 上海大学, 2018.

    GAO You. Study on Soil Water and Mechanical Properties of Unsaturated Soil in Wide Suction Range[D]. Shanghai: Shanghai University, 2018. (in Chinese)

    [12] 郭志杰. 细粒含量对粗—细粒混合土物理力学特性的影响[D]. 北京: 北京交通大学, 2018.

    GUO Zhijie. Effect of Fine Particle Content on Physical and Mechanical Properties of Coarse-Fine Mixed Soil[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)

    [13] 史新, 庞康, 李旭, 等. 宽级配砾质土防渗性能研究[J]. 岩土工程学报, 2018, 40(增刊2): 189-193. doi: 10.11779/CJGE2018S2038

    SHI Xin, PANG Kang, LI Xu, et al. Hydraulic conductivity of widely-graded gravelly soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 189-193. (in Chinese) doi: 10.11779/CJGE2018S2038

    [14] 庞康. 宽级配砾质土压实性和渗透性研究[D]. 北京: 北京交通大学, 2015.

    PANG Kang. Study on Compactness and Permeability of Wide Graded Gravel Soil[D]. Beijing: Beijing Jiaotong University, 2015. (in Chinese)

    [15] 李旭, 刘阿强, 刘丽, 等. 全吸力范围内土-水特征曲线的快速测定方法[J]. 岩土力学, 2022, 43(2): 299-306. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202001.htm

    LI Xu, LIU Aqiang, LIU Li, et al. A rapid method for determining the soil-water characteristic curves in the full suction range[J]. Rock and Soil Mechanics, 2022, 43(2): 299-306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202202001.htm

    [16] 田湖南, 孔令伟. 细粒对砂土持水能力影响的试验研究[J]. 岩土力学, 2010, 31(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001011.htm

    TIAN Hunan, KONG Lingwei. Experimental research on effect of fine grains on water retention capacity of silty sand[J]. Rock and Soil Mechanics, 2010, 31(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201001011.htm

    [17]

    BISHOP A W. Progressive failure with special reference to the mechanism causing it[C]// Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soils and Rocks, Oslo, 1967: 142-150.

    [18]

    ZHAO H F, CHEN Y D, ZHOU Z X, et al. Consequence of drying on the compression behaviour of soft clay[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 7933-7944.

    [19]

    ZHANG J R, NIU G, LI X C, et al. Hydro-mechanical behavior of expansive soils with different dry densities over a wide suction range[J]. Acta Geotechnica, 2020, 15(1): 265-278.

    [20] 周辉, 孟凡震, 张传庆, 等. 基于应力-应变曲线的岩石脆性特征定量评价方法[J]. 岩石力学与工程学报, 2014, 33(6): 1114-1122. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm

    ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Quantitative evaluation of rock brittleness based on stress-strain curve[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6): 1114-1122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201406004.htm

    [21]

    ZHAO H F, ZHANG L M, CHANG D S. Behavior of coarse widely graded soils under low confining pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(1): 35-48.

    [22]

    DAVID SUITS L, SHEAHAN T C, YANG S, et al. Determination of the transitional fines content of mixtures of sand and non-plastic fines[J]. Geotechnical Testing Journal, 2006, 29(2): 14010.

    [23]

    GAO Y, SUN D A, ZHU Z C, et al. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range[J]. Acta Geotechnica, 2019, 14(2): 417-428.

    [24]

    DONALD I B. Shear strength measurements in unsaturated non-cohesive soils with negative pore pressures[C]// Proc 2nd Australian and New Zealand Conference on Soil Mechanics and Foundation Engineering. Christchurch, 1956: 200-205.

    [25]

    SUITS L D, SHEAHAN T C, LIKOS W J, et al. Modified direct shear apparatus for unsaturated sands at low suction and stress[J]. Geotechnical Testing Journal, 2010, 33(5): 102927.

    [26]

    TOWNER G D, CHILDS E C. The mechanical strength of unsaturated porous granular material[J]. Journal of Soil Science, 1972, 23(4): 481-498.

    [27]

    ESCARIO V, SÁEZ J. The shear strength of partly saturated soils[J]. Géotechnique, 1986, 36(3): 453-456.

    [28]

    VANAPALLI S K, WRIGHT A, FREDLUND D G. Shear strength behavior of a silty soil over the suction range from 0 to 1, 000, 000 kPa[C]//Proceedings of the 53th Canadian Geotechnical Conference, Montreal, 2000: 15-18.

    [29] 赵煜鑫, 刘艳, 李旭, 等. 非饱和黏性土抗剪强度模型对比分析及参数确定方法[J]. 岩土工程学报, 2022, 44(增刊1): 126-131. doi: 10.11779/CJGE2022S1023

    ZHAO Yuxin, LIU Yan, LI Xu, et al. Comparative analysis and parameter determination method of shear strength models for unsaturated clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S1): 126-131. (in Chinese) doi: 10.11779/CJGE2022S1023

    [30]

    GAO Y, SUN D A, ZHOU A N, et al. Predicting shear strength of unsaturated soils over wide suction range[J]. International Journal of Geomechanics, 2020, 20(2): 04019175.

图(13)  /  表(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  32
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 网络出版日期:  2023-03-09
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回