Evaluation of improved MSD method based on centrifugal model tests on in-flight excavation of foundation pits
-
摘要: 研发了一套应用于高离心力场条件下在机基坑开挖装置和支撑施加系统,开展了多支撑支护的黏土基坑开挖的离心模型试验。将开挖引起的墙后地表沉降与挡墙变形的试验数据与已发表的相关研究成果进行对比分析,证明了该套在机开挖装置和支撑系统可有效模拟实际基坑工程的土体开挖及支撑。在离心试验数据的基础上,对基坑体系的变形机制进行了修正,提出了全量变形机制计算的改进动员强度法(mobilizable strength design,MSD)。应用改进MSD法计算多支撑开挖的挡墙变形曲线,并将计算结果与现场监测数据对比。结果表明:改进MSD法预测结果与实测数据较吻合,论证了改进MSD法的有效性。Abstract: A set of novel device for the centrifugal model tests on the whole process of excavation is developed to investigate the influences of excavation on wall displacement and ground settlement. The test data of excavation-induced ground settlement behind the retaining wall and wall deformation are compared with the published research results, and it is determined that the device can effectively simulate the excavation process under high centrifugal force field test conditions. Based on the centrifugal test data, the deformation mechanism of the foundation pit system is modified and the improved mobilizable strength design (MSD) is proposed. The improved MSD method is used to calculate the deformation curves of retaining walls for multi-pillar excavation, and the calculated results are compared with the field monitoring data. It is shown that the predicted results by the improved MSD method are consistent with the measured data, and the applicability of the improved MSD is demonstrated.
-
-
表 1 模型尺寸下离心模型试验的基坑开挖参数
Table 1 Excavation parameters for centrifugal model tests under model sizes
开挖深度/m 开挖宽度/m 挡墙高度/m 挡墙厚度/m 原型 模型 原型 模型 原型 模型 原型 模型 12.8 0.15 18.7 0.22 22.1 0.26 0.9 0.0077 表 2 原型/模型挡墙参数
Table 2 Parameters of prototype/model retaining walls
参数 挡墙弹性模量/GPa 挡墙泊松比 挡墙厚度/mm 原型 30 0.17 900 模型 72 0.33 7.7 表 3 改进MSD法计算的水平和竖向位移
Table 3 Vertical and horizontal displacements by improved MSD method
坐标 竖向位移增量wy 水平位移增量wx ABC,B为坐标原点 wy=wmax⋅[−(rkl)2+2rkl]⋅xr 0⩽r⩽klwy=wmax⋅[1l2−2kl2+k2l2(−r2+2klr+l2−2kl2)]⋅xr kl⩽r⩽l wx=wmax⋅[−(rkl)2+2rkl]⋅yr 0⩽r⩽klwx=wmax⋅[1l2−2kl2+k2l2(−r2+2klr+l2−2kl2)]⋅yr kl⩽r⩽l CDE,D为坐标原点 wy=−wmax⋅[−(r + klkl)2+2(r+kl)kl]⋅xr 0⩽r⩽k(l−H)wy=−wmax⋅[1l2−2kl2+k2l2(−(r+kl)2+2kl(r+kl)+l2−2kl2)]⋅xr k(l−H)⩽r⩽l−H wx=wmax⋅[−(r + klkl)2+2(r+kl)kl]⋅yr 0⩽r⩽k(l−H)wx=wmax⋅[1l2−2kl2+k2l2(−(r+kl)2+2kl(r+kl)+l2−2kl2)]⋅yr k(l−H)⩽r⩽l−H DEF,F为坐标原点 wy=−√22wmax⋅[−(√2/√222(x−y)+klkl)2+√2(x−y)+2klkl] 0⩽√2/√222(x−y)⩽k(l−H)wy=−√22wmax⋅[1l2−2kl2+k2l2(−(√2/2(x−y)+kl)2+2kl(√2/2(x−y)+kl)+l2−2kl2)]k(l−H)⩽√2/2(x−y)⩽l−H wx=√22wmax⋅[−(√2/√222(x−y)+klkl)2+√2(x−y)+2klkl] 0⩽√2/√222(x−y)⩽k(l−H)wx=√22wmax⋅[1l2−2kl2+k2l2(−(√2/√222(x−y)+kl)2+ 2kl(√2/√222(x−y)+kl)+l2−2kl2)] k(l−H)⩽√2/√222(x−y)⩽l−H 注:H为开挖深度(m);r为到圆弧中心的径向距离(m),r=√x2+y2(m)。 表 4 基坑开挖参数
Table 4 Excavation parameters for foundation pit
挡墙厚/mm 挡墙刚度/(kN·m-2) 挡墙长/m 最大开挖深度/m 开挖宽度/m 600 540000 27 17.3 20.8 -
[1] TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928
[2] 尹利洁, 李宇杰, 朱彦鹏, 等. 兰州地铁雁园路站基坑支护监测与数值模拟分析[J]. 岩土工程学报, 2021, 43(增刊1): 111-116. doi: 10.11779/CJGE2021S1020 YIN Lijie, LI Yujie, ZHU Yanpeng, et al. Monitoring and numerical simulation of support for foundation pit at Yanyuan Road Station of Lanzhou Metro[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 111-116. (in Chinese) doi: 10.11779/CJGE2021S1020
[3] 程康, 徐日庆, 应宏伟, 等. 杭州软黏土地区某30.2m深大基坑开挖性状实测分析[J]. 岩石力学与工程学报, 2021, 40(4): 851-863. CHENG Kang, XU Riqing, YING Hongwei, et al. Performance analysis of a 30.2m deep-large excavation in Hangzhou soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 851-863. (in Chinese)
[4] OSMAN A S, BOLTON M D. Ground movement predictions for braced excavations in undrained clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(4): 465-477. doi: 10.1061/(ASCE)1090-0241(2006)132:4(465)
[5] 苏秀婷, 陈健, 高文龙, 等. 基于改进MSD法的软土深基坑支护侧移规律[J]. 科学技术与工程, 2021, 21(5): 2002-2010. SU Xiuting, CHEN Jian, GAO Wenlong, et al. Lateral displacement law of deep foundation pit support in soft soil based on improved MSD method[J]. Science Technology and Engineering, 2021, 21(5): 2002-2010. (in Chinese)
[6] 刘美麟, 房倩, 张顶立, 等. 基于改进MSD法的基坑开挖动态变形预测[J]. 岩石力学与工程学报, 2018, 37(7): 1700-1707. LIU Meilin, FANG Qian, ZHANG Dingli, et al. Prediction of transient deformation due to excavation based on improved MSD method[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1700-1707. (in Chinese)
[7] 马险峰, 林想, 王欣杰, 等. 间隔型基坑开挖效应的离心机模拟试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 92-96. MA Xianfeng, LIN Xiang, WANG Xinjie, et al. Centrifugal model tests on excavation effect of interval foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 92-96. (in Chinese)
[8] ZHANG G, LI M, WANG L P. Analysis of the effect of the loading path on the failure behaviour of slopes[J]. KSCE Journal of Civil Engineering, 2014, 18(7): 2080-2084. doi: 10.1007/s12205-014-1461-7
[9] ELSHAFIE M Z E B, CHOY C K C, MAIR R J. Centrifuge modeling of deep excavations and their interaction with adjacent buildings[J]. Geotechnical Testing Journal, 2013, 36(5): 20120209. doi: 10.1520/GTJ20120209
[10] LAM S Y, ELSHAFIE M Z E B, HAIGH S K, et al. A new apparatus for modelling excavations[J]. International Journal of Physical Modelling in Geotechnics, 2012, 12(1): 24-38. doi: 10.1680/ijpmg.2012.12.1.24
[11] SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Doboku Gakkai Ronbunshu, 1988(398): 319-327.
[12] 李元海, 靖洪文, 刘刚, 等. 数字照相量测在岩石隧道模型试验中的应用研究[J]. 岩石力学与工程学报, 2007, 26(8): 1684-1690. doi: 10.3321/j.issn:1000-6915.2007.08.020 LI Yuanhai, JING Hongwen, LIU Gang, et al. Study on application of digital close range photogrammetry to model test of tunnel in jointed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1684-1690. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.020
[13] DENG C H, HAIGH S K, MA X F, et al. A design method for flexible retaining walls in clay[J]. Géotechnique, 2021, 71(2): 178-187. doi: 10.1680/jgeot.19.P.095
[14] OU C Y, HSIEH P G. A simplified method for predicting ground settlement profiles induced by excavation in soft clay[J]. Computers and Geotechnics, 2011, 38(8): 987-997. doi: 10.1016/j.compgeo.2011.06.008
[15] POWRIE W. The Ground Movement Predictions for Braced Excavations in Undrained Clay[D]. London: University of Cambridge, 1988.
[16] 张陈蓉, 俞剑, 黄茂松. 基坑开挖对邻近地下管线影响的变形控制标准[J]. 岩土力学, 2012, 33(7): 2027-2034. ZHANG Chenrong, YU Jian, HUANG Maosong. Deformation controlling criterion of effect on underground pipelines due to foundation pit excavation[J]. Rock and Soil Mechanics, 2012, 33(7): 2027-2034. (in Chinese)
[17] WANG Z W, NG C W W, LIU G B. Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42(5): 1243-54. doi: 10.1139/t05-056
[18] WANG L Z, LIU Y J, HONG Y, et al. Predicting deformation of multipropped excavations in soft clay with a modified mobilizable strength design (MMSD) method[J]. Computers and Geotechnics, 2018, 104: 54-68. doi: 10.1016/j.compgeo.2018.07.018
-
其他相关附件