Loading [MathJax]/jax/output/SVG/jax.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于在机开挖离心模型试验的改进MSD法评估

曹明洋, 马险峰

曹明洋, 马险峰. 基于在机开挖离心模型试验的改进MSD法评估[J]. 岩土工程学报, 2024, 46(1): 190-198. DOI: 10.11779/CJGE20220745
引用本文: 曹明洋, 马险峰. 基于在机开挖离心模型试验的改进MSD法评估[J]. 岩土工程学报, 2024, 46(1): 190-198. DOI: 10.11779/CJGE20220745
CAO Mingyang, MA Xianfeng. Evaluation of improved MSD method based on centrifugal model tests on in-flight excavation of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 190-198. DOI: 10.11779/CJGE20220745
Citation: CAO Mingyang, MA Xianfeng. Evaluation of improved MSD method based on centrifugal model tests on in-flight excavation of foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(1): 190-198. DOI: 10.11779/CJGE20220745

基于在机开挖离心模型试验的改进MSD法评估  English Version

基金项目: 

国家自然科学基金项目 41272290

详细信息
    作者简介:

    曹明洋(1992—),男,博士研究生,主要从事岩土工程数值计算及离心模型试验方面的研究工作。E-mail: mingyangcao@tongji.edu.cn

    通讯作者:

    马险峰, E-mail: xf.ma@tongji.edu.cn

  • 中图分类号: TU43

Evaluation of improved MSD method based on centrifugal model tests on in-flight excavation of foundation pits

  • 摘要: 研发了一套应用于高离心力场条件下在机基坑开挖装置和支撑施加系统,开展了多支撑支护的黏土基坑开挖的离心模型试验。将开挖引起的墙后地表沉降与挡墙变形的试验数据与已发表的相关研究成果进行对比分析,证明了该套在机开挖装置和支撑系统可有效模拟实际基坑工程的土体开挖及支撑。在离心试验数据的基础上,对基坑体系的变形机制进行了修正,提出了全量变形机制计算的改进动员强度法(mobilizable strength design,MSD)。应用改进MSD法计算多支撑开挖的挡墙变形曲线,并将计算结果与现场监测数据对比。结果表明:改进MSD法预测结果与实测数据较吻合,论证了改进MSD法的有效性。
    Abstract: A set of novel device for the centrifugal model tests on the whole process of excavation is developed to investigate the influences of excavation on wall displacement and ground settlement. The test data of excavation-induced ground settlement behind the retaining wall and wall deformation are compared with the published research results, and it is determined that the device can effectively simulate the excavation process under high centrifugal force field test conditions. Based on the centrifugal test data, the deformation mechanism of the foundation pit system is modified and the improved mobilizable strength design (MSD) is proposed. The improved MSD method is used to calculate the deformation curves of retaining walls for multi-pillar excavation, and the calculated results are compared with the field monitoring data. It is shown that the predicted results by the improved MSD method are consistent with the measured data, and the applicability of the improved MSD is demonstrated.
  • 图  1   开挖装置图

    Figure  1.   Photos of in-flight excavator

    图  2   内支撑系统图

    Figure  2.   Layout of internal strut system

    图  3   试验装置示意图

    Figure  3.   Schematic diagram of experimental set-up

    图  4   数字图像变形测量(DPDM) 装置

    Figure  4.   Configuration of digital picture deformation measurement (DPDM) cameras

    图  5   侧表面标记的模型土

    Figure  5.   Marked surface soil at lateral sides

    图  6   内支撑及应变片位置图

    Figure  6.   Positions of internal struts and strain gauges

    图  7   土体不排水抗剪强度与深度的关系

    Figure  7.   Relationship between shear strength of undrained soil and depth

    图  8   离心模型试验开挖过程

    Figure  8.   Excavation process of centrifugal model tests

    图  9   地表沉降曲线图

    Figure  9.   Development of ground surface settlement profiles at different excavation depths

    图  10   基坑开挖过程中的土体变形(单位:mm)

    Figure  10.   Deepseated soil deformation mechanism observed at different excavation stages

    图  11   挡墙变形曲线图

    Figure  11.   Observed wall displacements at different excavation depths

    图  12   挡墙水平位移变形与开挖深度关系

    Figure  12.   Relationship between normalized lateral displacement of wall and excavation depth

    图  13   改进MSD法内支撑开挖变形机制示意图

    Figure  13.   Deformation mechanism of braced excavations by modified MSD method

    图  14   改进MSD法计算步骤

    Figure  14.   Computational step of improved MSD method

    图  15   施工参数

    Figure  15.   Construction parameters

    图  16   土的应变强度曲线

    Figure  16.   Strength curves of soil

    图  17   现场测量和计算结果对比

    Figure  17.   Comparison between field measurements and calculated results

    表  1   模型尺寸下离心模型试验的基坑开挖参数

    Table  1   Excavation parameters for centrifugal model tests under model sizes

    开挖深度/m 开挖宽度/m 挡墙高度/m 挡墙厚度/m
    原型 模型 原型 模型 原型 模型 原型 模型
    12.8 0.15 18.7 0.22 22.1 0.26 0.9 0.0077
    下载: 导出CSV

    表  2   原型/模型挡墙参数

    Table  2   Parameters of prototype/model retaining walls

    参数 挡墙弹性模量/GPa 挡墙泊松比 挡墙厚度/mm
    原型 30 0.17 900
    模型 72 0.33 7.7
    下载: 导出CSV

    表  3   改进MSD法计算的水平和竖向位移

    Table  3   Vertical and horizontal displacements by improved MSD method

    坐标 竖向位移增量wy 水平位移增量wx
    ABCB为坐标原点 wy=wmax[(rkl)2+2rkl]xr 0rklwy=wmax[1l22kl2+k2l2(r2+2klr+l22kl2)]xr klrl wx=wmax[(rkl)2+2rkl]yr 0rklwx=wmax[1l22kl2+k2l2(r2+2klr+l22kl2)]yr klrl
    CDED为坐标原点 wy=wmax[(r + klkl)2+2(r+kl)kl]xr 0rk(lH)wy=wmax[1l22kl2+k2l2((r+kl)2+2kl(r+kl)+l22kl2)]xr k(lH)rlH wx=wmax[(r + klkl)2+2(r+kl)kl]yr 0rk(lH)wx=wmax[1l22kl2+k2l2((r+kl)2+2kl(r+kl)+l22kl2)]yr  k(lH)rlH
    DEFF为坐标原点 wy=22wmax[(2/222(xy)+klkl)2+2(xy)+2klkl]  02/222(xy)k(lH)wy=22wmax[1l22kl2+k2l2((2/2(xy)+kl)2+2kl(2/2(xy)+kl)+l22kl2)]k(lH)2/2(xy)lH wx=22wmax[(2/222(xy)+klkl)2+2(xy)+2klkl]  02/222(xy)k(lH)wx=22wmax[1l22kl2+k2l2((2/222(xy)+kl)2+   2kl(2/222(xy)+kl)+l22kl2)] k(lH)2/222(xy)lH
    注:H为开挖深度(m);r为到圆弧中心的径向距离(m),r=x2+y2(m)。
    下载: 导出CSV

    表  4   基坑开挖参数

    Table  4   Excavation parameters for foundation pit

    挡墙厚/mm 挡墙刚度/(kN·m-2) 挡墙长/m 最大开挖深度/m 开挖宽度/m
    600 540000 27 17.3 20.8
    下载: 导出CSV
  • [1]

    TAN Y, WANG D L. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. Ⅰ: bottom-up construction of the central cylindrical shaft[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(11): 1875-1893. doi: 10.1061/(ASCE)GT.1943-5606.0000928

    [2] 尹利洁, 李宇杰, 朱彦鹏, 等. 兰州地铁雁园路站基坑支护监测与数值模拟分析[J]. 岩土工程学报, 2021, 43(增刊1): 111-116. doi: 10.11779/CJGE2021S1020

    YIN Lijie, LI Yujie, ZHU Yanpeng, et al. Monitoring and numerical simulation of support for foundation pit at Yanyuan Road Station of Lanzhou Metro[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 111-116. (in Chinese) doi: 10.11779/CJGE2021S1020

    [3] 程康, 徐日庆, 应宏伟, 等. 杭州软黏土地区某30.2m深大基坑开挖性状实测分析[J]. 岩石力学与工程学报, 2021, 40(4): 851-863.

    CHENG Kang, XU Riqing, YING Hongwei, et al. Performance analysis of a 30.2m deep-large excavation in Hangzhou soft clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 851-863. (in Chinese)

    [4]

    OSMAN A S, BOLTON M D. Ground movement predictions for braced excavations in undrained clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(4): 465-477. doi: 10.1061/(ASCE)1090-0241(2006)132:4(465)

    [5] 苏秀婷, 陈健, 高文龙, 等. 基于改进MSD法的软土深基坑支护侧移规律[J]. 科学技术与工程, 2021, 21(5): 2002-2010.

    SU Xiuting, CHEN Jian, GAO Wenlong, et al. Lateral displacement law of deep foundation pit support in soft soil based on improved MSD method[J]. Science Technology and Engineering, 2021, 21(5): 2002-2010. (in Chinese)

    [6] 刘美麟, 房倩, 张顶立, 等. 基于改进MSD法的基坑开挖动态变形预测[J]. 岩石力学与工程学报, 2018, 37(7): 1700-1707.

    LIU Meilin, FANG Qian, ZHANG Dingli, et al. Prediction of transient deformation due to excavation based on improved MSD method[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1700-1707. (in Chinese)

    [7] 马险峰, 林想, 王欣杰, 等. 间隔型基坑开挖效应的离心机模拟试验研究[J]. 岩土工程学报, 2022, 44(增刊2): 92-96.

    MA Xianfeng, LIN Xiang, WANG Xinjie, et al. Centrifugal model tests on excavation effect of interval foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 92-96. (in Chinese)

    [8]

    ZHANG G, LI M, WANG L P. Analysis of the effect of the loading path on the failure behaviour of slopes[J]. KSCE Journal of Civil Engineering, 2014, 18(7): 2080-2084. doi: 10.1007/s12205-014-1461-7

    [9]

    ELSHAFIE M Z E B, CHOY C K C, MAIR R J. Centrifuge modeling of deep excavations and their interaction with adjacent buildings[J]. Geotechnical Testing Journal, 2013, 36(5): 20120209. doi: 10.1520/GTJ20120209

    [10]

    LAM S Y, ELSHAFIE M Z E B, HAIGH S K, et al. A new apparatus for modelling excavations[J]. International Journal of Physical Modelling in Geotechnics, 2012, 12(1): 24-38. doi: 10.1680/ijpmg.2012.12.1.24

    [11]

    SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses[J]. Doboku Gakkai Ronbunshu, 1988(398): 319-327.

    [12] 李元海, 靖洪文, 刘刚, 等. 数字照相量测在岩石隧道模型试验中的应用研究[J]. 岩石力学与工程学报, 2007, 26(8): 1684-1690. doi: 10.3321/j.issn:1000-6915.2007.08.020

    LI Yuanhai, JING Hongwen, LIU Gang, et al. Study on application of digital close range photogrammetry to model test of tunnel in jointed rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(8): 1684-1690. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.08.020

    [13]

    DENG C H, HAIGH S K, MA X F, et al. A design method for flexible retaining walls in clay[J]. Géotechnique, 2021, 71(2): 178-187. doi: 10.1680/jgeot.19.P.095

    [14]

    OU C Y, HSIEH P G. A simplified method for predicting ground settlement profiles induced by excavation in soft clay[J]. Computers and Geotechnics, 2011, 38(8): 987-997. doi: 10.1016/j.compgeo.2011.06.008

    [15]

    POWRIE W. The Ground Movement Predictions for Braced Excavations in Undrained Clay[D]. London: University of Cambridge, 1988.

    [16] 张陈蓉, 俞剑, 黄茂松. 基坑开挖对邻近地下管线影响的变形控制标准[J]. 岩土力学, 2012, 33(7): 2027-2034.

    ZHANG Chenrong, YU Jian, HUANG Maosong. Deformation controlling criterion of effect on underground pipelines due to foundation pit excavation[J]. Rock and Soil Mechanics, 2012, 33(7): 2027-2034. (in Chinese)

    [17]

    WANG Z W, NG C W W, LIU G B. Characteristics of wall deflections and ground surface settlements in Shanghai[J]. Canadian Geotechnical Journal, 2005, 42(5): 1243-54. doi: 10.1139/t05-056

    [18]

    WANG L Z, LIU Y J, HONG Y, et al. Predicting deformation of multipropped excavations in soft clay with a modified mobilizable strength design (MMSD) method[J]. Computers and Geotechnics, 2018, 104: 54-68. doi: 10.1016/j.compgeo.2018.07.018

图(17)  /  表(4)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  73
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 网络出版日期:  2024-01-08
  • 刊出日期:  2023-12-31

目录

    /

    返回文章
    返回