• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应

李双杰, 伍浩良, 傅贤雷, 蒋宁俊, 万佳磊, 李江山, 杜延军

李双杰, 伍浩良, 傅贤雷, 蒋宁俊, 万佳磊, 李江山, 杜延军. 氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应[J]. 岩土工程学报, 2022, 44(6): 1078-1086. DOI: 10.11779/CJGE202206012
引用本文: 李双杰, 伍浩良, 傅贤雷, 蒋宁俊, 万佳磊, 李江山, 杜延军. 氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应[J]. 岩土工程学报, 2022, 44(6): 1078-1086. DOI: 10.11779/CJGE202206012
LI Shuang-jie, WU Hao-liang, FU Xian-lei, JIANG Ning-jun, WAN Jian-lei, LI Jiang-shan, DU Yan-jun. Experimental study on chemico-osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1078-1086. DOI: 10.11779/CJGE202206012
Citation: LI Shuang-jie, WU Hao-liang, FU Xian-lei, JIANG Ning-jun, WAN Jian-lei, LI Jiang-shan, DU Yan-jun. Experimental study on chemico-osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1078-1086. DOI: 10.11779/CJGE202206012

氧化镁碱激发矿粉-膨润土-土竖向屏障材料阻隔铅污染物的化学渗透膜效应  English Version

基金项目: 

国家重点研发计划项目 2018YFC1803100

国家重点研发计划项目 2018YFC1802300

国家自然科学基金项目 41877248

国家自然科学基金项目 42177133

详细信息
    作者简介:

    李双杰(1997—),男,硕士研究生,主要从事环境岩土工程学习和研究。E-mail: 220193046@seu.edu.cn

    通讯作者:

    杜延军, E-mail: duyanjun@seu.edu.cn

  • 中图分类号: TU43

Experimental study on chemico-osmotic membrane behaviors of reactive MgO-activated slag-bentonite backfill in vertical cutoff walls exposed to Pb-laden groundwater

  • 摘要: 采用活性氧化镁激发粒化高炉矿粉(GGBS)制备氧化镁激发矿粉-膨润土-土(MSBS)竖向阻隔屏障材料。通过一维土柱化学渗透试验,研究了硝酸铅(Pb(NO3)2)污染液浓度对MSBS阻隔屏障材料的阻隔性能参数包括化学渗透膜效率系数、有效扩散系数和阻滞因子的影响规律,对比分析了MSBS、土-膨润土(SB)和膨润土防水毯(GCL)竖向屏障材料的阻隔性能参数的差异特征。结果表明:MSBS屏障材料在Pb(NO3)2污染液中表现出明显的化学渗透膜效应,其化学渗透膜效率系数随着Pb(NO3)2污染液浓度增加迅速减小。MSBS阻隔屏障材料Pb2+的有效扩散系数随Pb(NO3)2污染液浓度增大略有增加,但变化幅度明显低于SB屏障材料。MSBS的阻滞因子受Pb2+浓度影响不显著,而SB竖向阻隔屏障对于Pb2+的阻滞因子则随其浓度增加而显著降低。
    Abstract: The reactive magnesia (MgO) is used as an alkali activator to activate granulated blast furnace slag (GGBS) to prepare alkali activated slag-bentonite-soil vertical barrier (MSBS) material. The chemico-osmotic memberane behavior test using lead nitrate Pb(NO3)2 solutions with different concentrations as testing liquids is conducted on the MSBS specimen, and the effects of Pb(NO3)2 concentration on the Pb2+ containment performance including chemico-osmotic efficiency coefficient, effective diffusion coefficient and retardation factor are evaluated. Comparative assessment of performance is made between the MSBS material in this study and other engineered barrier materials including soil-bentonite (SB) vertical cutoff wall backfill and geosynthetic clay liner (GCL) reported in previously published studies. The results show that the MSBS backfill has noticeable chemical-osmotic membrane behavior, and the chemico-osmotic efficiency coefficient decreases rapidly with the increasing Pb2+ concentration. The effective diffusion coefficient of Pb2+in the MSBS increases slightly with the increasing Pb2+concentration, and its change magnitude is significantly lower than that for the SB backfill materials. The retardation factor for Pb2+ in the MSBS backfill remains practically constant with the increasing Pb2+concentration, whereas it decreases significantly with the increasing Pb2+ concentration for the SB backfill materials.
  • 图  1   测试装置示意图[16]

    Figure  1.   Schematic diagram of testing apparatus[16]

    图  2   扩散达到稳定状态单位面积累积溶质通量与时间关系[31]

    Figure  2.   Schematic diagram of steady state diffusion results[31]

    图  3   去离子水冲刷阶段渗滤液pH/EC随时间的变化关系

    Figure  3.   Variation of pH/electrical conductivity of effluent solution with time at flushing stage using DIW

    图  4   MSBS屏障试样上下两端收集液pH随时间的变化关系

    Figure  4.   Variation of pH in liquids collected from upper and lower ends of MSBS specimen with time

    图  5   MSBS屏障试样上下两端收集液EC随时间的变化关系

    Figure  5.   Variation of electrical conductivity in liquids collected from upper and lower ends of MSBS specimen with time

    图  6   MSBS屏障试样上下两端收集液中Pb2+浓度与时间的变化关系

    Figure  6.   Variation of Pb2+ concentration in liquids collected from upper and lower ends of MSBS specimen with time

    图  7   MSBS屏障试样上下两端化学渗透压差随时间变化关系

    Figure  7.   Variation of chemico-osmotic pressure of MSBS specimen with time

    图  8   试样化学渗透膜效率系数随着时间的变化

    Figure  8.   Change of chemico-osmotic efficiency coefficient of MSBS specimen with time

    图  9   不同岩土工程材料化学渗透膜效率系数随Pb2+浓度的变化

    Figure  9.   Relationship between chemico-osmotic efficiency coefficient and concentration of Pb2+ for different barrier materials

    图  10   MSBS屏障材料单位面积累计Pb2+质量通量Q随化学渗透时间t的关系

    Figure  10.   Variation of unit area accumulated quality flux of MSBS barrier specimen with time

    图  11   不同竖向阻隔材料有效扩散系数随Pb2+浓度的变化

    Figure  11.   Relationship between effective diffusion coefficient and concentration of Pb2+for different vertical cutoff wall backfills

    图  12   不同竖向阻隔材料阻滞因子随Pb2+浓度的变化

    Figure  12.   Relationship between retardation factor and concentration of Pb2+ for different cutoff wall backfills

    表  1   试验用土的基本土工参数

    Table  1   Properties of soil used in this study

    基本指标 天然含水率/% 重度Gs 塑限wP/% 液限wL/% 黏粒含量/% 粉粒含量/% 砂粒含量/% 比表面积/(m2·g-1) pH 蒙脱石含量/%
    南京砂土 4.81 2.62 5.62 14.18 80.2 7.32
    镇江膨润土 11.20 2.66 54 103 99.00 1.00 378.5 8.60 66.9
    下载: 导出CSV

    表  2   粒化高炉矿粉基本物理-化学特征

    Table  2   Properties of GGBS

    基本指标 数值
    GGBS MgO
    颜色 灰白色粉末 白色粉末状
    含量/% 77.6
    活性/s 90~100
    比表面积/(m2·g-1) 0.2564 28.0230
    密度/(g·mL-1) 3.58
    碱度 1.871
    pH 12.21 10.71
    下载: 导出CSV

    表  3   Pb(NO3)2污染液基本化学性质

    Table  3   Basic chemical properties of Pb(NO3)2 liquids

    溶液 Pb2+浓度c0/(mg·L-1) EC/(μS·cm-1) pH
    Pb(NO3)2 0.1 44.5 6.84
    0.5 51.6 659
    1 84.8 6.45
    2 120.1 6.31
    10 249.6 5.96
    50 487.4 5.63
    下载: 导出CSV
  • [1] 刘松玉, 詹良通, 胡黎明, 等. 环境岩土工程研究进展[J]. 土木工程学报, 2016, 49(3): 6–30. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603003.htm

    LIU Song-yu, ZHAN Liang-tong, HU Li-ming, et al. Environmental geotechnics: state-of-the-art of theory, testing and application to practice[J]. China Civil Engineering Journal, 2016, 49(3): 6–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603003.htm

    [2] 陈云敏, 谢海建, 张春华. 污染物击穿防污屏障与地下水土污染防控研究进展[J]. 水利水电科技进展, 2016, 36(1): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    CHEN Yun-min, XIE Hai-jian, ZHANG Chun-hua. Review on penetration of barriers by contaminants and technologies for groundwater and soil contamination control[J]. Advances in Science and Technology of Water Resources, 2016, 36(1): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201601002.htm

    [3] 钱学德, 朱伟, 王升位. 填埋场和污染场地防污屏障设计与施工-上册[M]. 北京: 科学出版社, 2017.

    QIAN Xue-de, ZHU Wei, WANG Sheng-wei. Design and Condtruction of Protective Barriers for Waste Containments and Contaminated Sites[M]. Beijing: Science Press, 2017. (in Chinese)

    [4]

    ROWE R, QUIGLEY R, BOOKER J. Barrier Systems for Waste Disposal Facilities[M]. London: CRC Press, 2014.

    [5]

    YEO S S, SHACKELFORD C D, EVANS J C. Consolidation and hydraulic conductivity of nine model soil-bentonite backfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(10): 1189–1198. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1189)

    [6]

    WAN H W, SHUI Z H, LIN Z S. Analysis of geometric characteristics of GGBS particles and their influences on cement properties[J]. Cement and Concrete Research, 2004, 34(1): 133–137. doi: 10.1016/S0008-8846(03)00252-7

    [7]

    LIU S H, HAN W W, LI Q. Hydration properties of ground granulated blast-furnace slag (GGBS) under different hydration environments[J]. Materials Science, 2017, 23(1): 70–77.

    [8]

    HAHA M B, LOTHENBACH B, SAOUT G L, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part Ⅰ: effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955–963. doi: 10.1016/j.cemconres.2011.05.002

    [9]

    YI Y L, LISKA M, AL-TABBAA A. Initial investigation into the use of GGBS-MgO in soil stabilisation[C]//Proceedings of the Fourth International Conference on Grouting and Deep Mixing. 2012. New Orleans.

    [10] 伍浩良, 杜延军, 王菲, 等. 碱激发矿渣膨润土系竖向隔离墙体材料施工和易性及强度特性[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1005.htm

    WU Hao-liang, DU Yan-jun, WANG Fei, et al. Workability and strength characteristics of alkali-activated slag-bentonite backfills for vertical slurry cutoff wall[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(S1): 25–30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1005.htm

    [11]

    WU H L, JIN F, ZHOU A N, et al. The engineering properties and reaction mechanism of MgO-activated slag cement-clayey sand-bentonite (MSB) cutoff wall backfills[J]. Construction and Building Materials, 2021, 271: 121890. doi: 10.1016/j.conbuildmat.2020.121890

    [12]

    WU H L, JIN F, NI J, et al. Engineering properties of vertical cutoff walls consisting of reactive magnesia-activated slag and bentonite: workability, strength, and hydraulic conductivity[J]. Journal of Materials in Civil Engineering, 2019, 31(11): 04019263. doi: 10.1061/(ASCE)MT.1943-5533.0002908

    [13]

    WU H L, NI J, ZENG L, et al. Durability of alkali-activated slag-bentonite cutoff wall exposed to sodium sulfate and Pb-Zn solution[C]//The International Congress on Environmental Geotechnics, 2018, Hangzhou.

    [14] 傅贤雷, 杜延军, 沈胜强, 等. PAC改性膨润土/砂竖向阻隔屏障回填料化学渗透膜效应及扩散特性研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3669–3675. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm

    FU Xian-lei, DU Yan-jun, SHEN Sheng-qiang, et al. Chemico-osmotic membrane behavior and diffusive properties of PAC amended bentonite/sand vertical cutoff wall backfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S2): 3669–3675. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2020S2044.htm

    [15] 傅贤雷, 张润, 万勇, 等. 改性土–膨润土阻隔屏障化学渗透膜效应研究[J]. 岩土工程学报, 2020, 42(增刊1): 172–176. doi: 10.11779/CJGE2020S1034

    FU Xian-lei, ZHANG Run, WAN Yong, et al. Chemico-osmotic membrane behaviors of amended soil-bentonite vertical barrier[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S1): 172–176. (in Chinese) doi: 10.11779/CJGE2020S1034

    [16]

    FU X L, ZHANG R, REDDY K R, et al. Membrane behavior and diffusion properties of sand/SHMP-amended bentonite vertical cutoff wall backfill exposed to lead contamination[J]. Engineering Geology, 2021, 284: 106037. doi: 10.1016/j.enggeo.2021.106037

    [17]

    SCALIA J IV, BOHNHOFF G L, SHACKELFORD C D, et al. Enhanced bentonites for containment of inorganic waste leachates by GCLs[J]. Geosynthetics International, 2018, 25(4): 392–411. doi: 10.1680/jgein.18.00024

    [18]

    MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: John Wiley & Sons, 2005.

    [19]

    SHACKELFORD C D, LEE J M. The destructive role of diffusion on clay membrane behavior[J]. Clays and Clay Minerals, 2003, 51(2): 186–196. doi: 10.1346/CCMN.2003.0510209

    [20] 肖承坤. 我国铅污染现状分析[C]//全国铅污染监测与控制治理技术交流研讨会, 2007, 上海.

    XIAO Cheng-kun. Analysis of present situation about lead pollution in China[C]//National Lead Pollution Monitoring and Control Technology Exchange Seminar, 2007, Shanghai. (in Chinese)

    [21] 地下水环境质量标准: GB/T14848—2017[S]. 2017.

    Environmental Quality Standard for Groundwater: GB/T14848—2017[S]. 2017. (in Chinese)

    [22]

    Standard Test Method for Electrical Conductivity and Resistivity of Water: ASTM D1125—14[S]. 2014.

    [23]

    Method for pH of Aqueous Solutions with the Glass Electrode: ASTM E70-07[S]. 2015.

    [24]

    FRITZ S J. Ideality of clay membranes in osmotic processes: a review[J]. Clays and Clay Minerals, 1986, 34(2): 214–223. doi: 10.1346/CCMN.1986.0340212

    [25]

    MALUSIS M A, SHACKELFORD C D. Chemico-osmotic efficiency of a geosynthetic clay liner[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(2): 97–106. doi: 10.1061/(ASCE)1090-0241(2002)128:2(97)

    [26]

    KANG J B, SHACKELFORD C D. Clay membrane testing using a flexible-wall cell under closed-system boundary conditions[J]. Applied Clay Science, 2009, 44(1/2): 43–58.

    [27]

    YE W M, SU W, CHEN Y G, et al. Membrane behavior of compacted GMZ bentonite and its granite mixture[J]. Environmental Earth Sciences, 2017, 76(20): 1–13.

    [28]

    MALUSIS M A, SHACKELFORD C D, OLSEN H W. A laboratory apparatus to measure chemico-osmotic efficiency coefficients for clay soils[J]. Geotechnical Testing Journal, 2001, 24(3): 229–242. doi: 10.1520/GTJ11343J

    [29]

    HENNING J T, EVANS J C, SHACKELFORD C D. Membrane behavior of two backfills from field-constructed soil-bentonite cutoff walls[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(10): 1243–1249. doi: 10.1061/(ASCE)1090-0241(2006)132:10(1243)

    [30]

    SHACKELFORD C D. Laboratory diffusion testing for waste disposal—A review[J]. Journal of Contaminant Hydrology, 1991, 7(3): 177–217. doi: 10.1016/0169-7722(91)90028-Y

    [31] 陈左波. 砂-膨润土系竖向隔离墙阻滞重金属污染物运移特性的试验研究[D]. 南京: 东南大学, 2014.

    CHEN Zuo-bo. Research of Limiting Migration of Heavy Metal of Sand. Bentonite Vertical Cutoff Wall[D]. Nanjing: Southeast University, 2017. (in Chinese)

    [32]

    SHACKELFORD C D. Membrane behavior in geosynthetic clay liners[C]//Geo-Frontiers Congress, 2011, Dallas.

    [33] 梅丹兵. 土–膨润土系竖向隔离工程屏障阻滞污染物运移的模型试验研究[D]. 南京: 东南大学, 2017.

    MEI Dan-bing. Model Test Study of Limiting Migration of HeavyMeal of Soil-Bentonite Vertical Cutoff Wall[D]. Nanjing: Southeast University, 2017. (in Chinese)

    [34] 张润. 六偏磷酸钠改良膨润土系竖向工程屏障防渗吸附扩散性能研究[D]. 南京: 东南大学, 2018.

    ZHANG Run. Hydraulic and Containment Performance of Shmp-Amended Soil-Bentonite Vertical Cutoff Wall Backfills Against Heavy Metals[D]. Nanjing: Southeast University, 2018. (in Chinese)

    [35]

    TANG Q. Factors Affecting Waste Leachate Generation and Barrier Performance of Landfill Liners[D]. Tokyo: University of Tokyo. 2013.

    [36]

    SHACKELFORD C. Membrane behavior in engineered bentonite-based containment barriers[M]//Coupled Phenomena in Environmental Geotechnics. London: CRC Press, 2013.

    [37]

    CONSOLI N C, HEINECK K S, CARRARO J A H. Portland cement stabilization of soil–bentonite for vertical cutoff walls against diesel oil contaminant[J]. Geotechnical and Geological Engineering, 2010, 28(4): 361-371. doi: 10.1007/s10706-009-9297-5

    [38]

    OWAIDAT L M, ANDROMALOS K B, SISLEY J L, et al. Construction of a soil-cement-bentonite slurry wall for a levee strengthening program[C]//Proceedings of the 1999 Annual Conference of the Association of State Dam Safety Officials, 1999. St Louis.

  • 期刊类型引用(10)

    1. 王道远,马涛,张高翔,贺少辉,惠云杰,马济文,宋宝禄,袁金秀. 基于不完全土拱效应盾构隧道土压力计算方法. 铁道工程学报. 2025(02): 57-62 . 百度学术
    2. 刘映晶,闵加正,张文宏,王幸福,刘松. 软土地层盾构近距上跨运营地铁施工技术. 科学技术与工程. 2022(03): 1147-1153 . 百度学术
    3. 钱师雄. 特大跨度公路隧道上方卸载对隧道影响分析. 中国市政工程. 2022(02): 92-95+113-114 . 百度学术
    4. 陈培帅,王伟,吴忠仕,袁青,江鸿,翟世鸿. 浅埋大跨度黄土隧道变形特征及控制措施研究. 现代隧道技术. 2021(01): 203-211 . 百度学术
    5. 吴占东. 冻融环境浅埋砂质黄土隧道围岩变形规律研究. 铁道工程学报. 2021(01): 55-59 . 百度学术
    6. 宋战平,刘彦龙,张玉伟. 黄土隧道深浅埋界限划分研究现状及展望. 隧道与地下工程灾害防治. 2021(02): 1-15 . 百度学术
    7. 慕焕东,邓亚虹,张文栋. 沙漠-黄土高原过渡区砂质黄土强度试验研究. 西北农林科技大学学报(自然科学版). 2020(08): 146-154 . 百度学术
    8. 马相峰,龚伦,吴金霖,王立川,孔超. 地铁盾构下穿多股道铁路路基变形控制优化研究. 铁道标准设计. 2019(11): 85-90 . 百度学术
    9. 李正涛,马相峰,吴金霖,王立川,龚伦,郑余朝. 三洞近接下穿铁路路基影响分析与施工关键技术研究. 铁道建筑技术. 2019(05): 122-127 . 百度学术
    10. 马相峰,龚伦,张致心,仇文革,王立川,周上进. 开挖与回填过程中隧道受力和承载拱效应研究. 隧道建设(中英文). 2019(S2): 185-191 . 百度学术

    其他类型引用(5)

图(12)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2021-07-18
  • 网络出版日期:  2022-09-22
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回