Estimation of hydraulic conductivity of unsaturated soils under entire suction range
-
摘要: 非饱和土水力渗透系数决定了水分在非饱和土体中迁移的速率,因此非饱和土水力渗透系数是研究水分在非饱和土中迁移规律的关键参数。一般情况,渗流数值计算软件将水力渗透系数方程作为输入参数,水力渗透系数方程的准确性直接影响渗流模拟结果的可靠性。常用的非饱和土水力渗透系数方程大多基于毛细水的相关理论,在低吸力区其计算结果与试验数据吻合度较高,但在高吸力区计算结果与试验数据差异显著。将全吸力范围分为毛细水渗流主导区、膜态水渗流主导区、气态水渗流主导区,并分析了不同形态的水分在非饱和土体中迁移规律的控制机理。全吸力范围的非饱和土水力渗透系数定义为表观渗透系数,其包含毛细水渗透系数、膜态水渗透系数和气态水渗透系数。通过剖析毛细水、薄膜水以及水蒸气在非饱和土体中迁移机理,推导不同形态水分渗透系数的数学表达,最终得出全吸力范围非饱和土的水力渗透系数计算方程。Abstract: The hydraulic conductivity of unsaturated soils controls their water flow. Most numerical softwares adopt the hydraulic conductivity function (HCF) as the input parameter to simulate the water flow in unsaturated soils. The accuracy of the inputted HCF has significant effect on the reliability of the simulated results from the seepage analysis. It is noted that most HCFs are proposed based on the theory of capillary flow. It is observed that in the high suction range, the estimated HCF of unsaturated soils from the capillary flow is much lower than what is obtained from the experimental measurement. In this study, the water flows in unsaturated soils are categorized into three forms, including (i) capillary flow, (ii) film flow and (iii) vapour flow. The mathematical models for the HCF of soils corresponding to those three forms of water flow are proposed. Consequently, the total HCF of unsaturated soils under the entire suction range is proposed.
-
Keywords:
- pore-size distribution /
- hydraulic conductivity function /
- capillary flow /
- film flow /
- vapour flow
-
-
-
[1] FREDLUND D G, RAHARDJO H, FREDLUND M D. Unsaturated Soil Mechanics in Engineering Practice[M]. Hoboken: John Wiley & Sons, Inc., 2012.
[2] MUALEM Y. Hydraulic conductivity of unsaturated soils: prediction and formulas[C]// Methods of Soil Analysis: Part 1, Physical and Mineralogical Methods, 1986, Madison.
[3] LEONG E C, RAHARDJO H. Permeability functions for unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(12): 1118–1126. doi: 10.1061/(ASCE)1090-0241(1997)123:12(1118)
[4] GARDNER W R. Mathematics of Isothermal Water Conduction in Unsaturated Soils[R]. Washington D C: Highway Research Board Special Report 40, presented at the International Symposium on Physico-Chemical Phenomenon in Soils, 1958.
[5] DAVIDSON J M, STONE L R, NIELSEN D R, et al. Field measurement and use of soil-water properties[J]. Water Resources Research, 1969, 5(6): 1312–1321. doi: 10.1029/WR005i006p01312
[6] CAMPBELL J D. Pore Pressures and Volume Changes in Unsaturated Soils[D]. Urbana-Champaign: Univ of Illinois at Urbana-Champaign, 1973.
[7] RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318–333. doi: 10.1063/1.1745010
[8] CHRISTENSEN H R. Permeability-capillary potential curves for three prairie soils[J]. Soil Science, 1944, 57(5): 381–390. doi: 10.1097/00010694-194405000-00007
[9] WIND G P. A field experiment concerning capillary rise of moisture in a heavy clay soil[J]. Netherlands Journal of Agricultural Science, 1955, 3(1): 60–69. doi: 10.18174/njas.v3i1.17827
[10] RIJTAMA P E. An Analysis of Actual Evapotranspiration[R]. Wageningen: Agric Res Rep, 1965.
[11] PHILIP J R. Linearized unsteady multidimensional infiltration[J]. Water Resources Research, 1986, 22(12): 1717–1727. doi: 10.1029/WR022i012p01717
[12] AVERJANOV S F. About Permeability of Subsurface Soils in Case of Incomplete Saturation[R]. Princeton: Princeton University Press, 1950.
[13] IRMAY S. On the hydraulic conductivity of unsaturated soils[J]. Transactions, American Geophysical Union, 1954, 35(3): 463–468. doi: 10.1029/TR035i003p00463
[14] COREY A T. The interrelation between gas and oil relative permeabilities[J]. Producer's Monthly, 1954, 19: 7–10.
[15] CHILDS E C, COLLIS-GEORGE N. The permeability of porous materials[J]. Proceedings of The Royal Society of London Series A-Mathematical and Physical Sciences, 1950, 201(1066): 392–405.
[16] MARSHALL T J. A relation between permeability and size distribution of pores[J]. Journal of Soil Science, 1958, 9(1): 1–8. doi: 10.1111/j.1365-2389.1958.tb01892.x
[17] KUNZE R J, UEHARA G, GRAHAM K. Factors important in the calculation of hydraulic conductivity[J]. Soil Science Society of America Journal, 1968, 32(6): 760–765. doi: 10.2136/sssaj1968.03615995003200060020x
[18] FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533–546. doi: 10.1139/t94-062
[19] ZHAI Q, RAHARDJO H. Estimation of permeability function from the soil-water characteristic curve[J]. Engineering Geology, 2015, 199: 148–156. doi: 10.1016/j.enggeo.2015.11.001
[20] FREDLUND D G, FREDLUND M D. Application of 'estimation procedures' in unsaturated soil mechanics[J]. Geosciences, 2020, 10(9): 22.
[21] 孙大松, 刘鹏, 夏小和, 等. 非饱和土的渗透系数[J]. 水利学报, 2004(3): 71–75. doi: 10.3321/j.issn:0559-9350.2004.03.012 SUN Da-song, LIU Peng, XIA Xiao-he, et al. Permeability coefficient of unsaturated soils[J]. Journal of Hydraulic Engineering, 2004(3): 71–75. (in Chinese) doi: 10.3321/j.issn:0559-9350.2004.03.012
[22] 蔡国庆, 盛岱超, 周安楠. 考虑初始孔隙比影响的非饱和土相对渗透系数方程[J]. 岩土工程学报, 2014, 36(5): 827–835. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405006.htm CAI Guo-qing, SHENG Dai-chao, ZHOU An-nan. Approach for predicting the relative coefficient of permeability of unsaturated soils with different initial void ratios[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 827–835. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405006.htm
[23] 邵龙潭, 温天德, 郭晓霞. 非饱和土渗透系数的一种测量方法和预测公式[J]. 岩土工程学报, 2019, 41(5): 806–812. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905003.htm SHAO Long-tan, WEN Tian-de, GUO Xiao-xia. Direct measurement method and prediction formula for permeability coefficient of unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(5): 806–812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201905003.htm
[24] SAARENKETO T. Electrical properties of water in clay and silty soils[J]. Journal of Applied Geophysics, 1998, 40(1/2/3): 73–88.
[25] PLASTER E J. Soil Science and Management[M]. Delmar: Clifton Park, 2009.
[26] ZHAI Q, RAHARDJO H, SATYANAGA A, et al. Estimation of unsaturated shear strength from soil–water characteristic curve[J]. Acta Geotechnica, 2019, 14(6): 1977–1990. doi: 10.1007/s11440-019-00785-y
[27] BROOKS R H, COREY A T. Hydraulic Properties of Porous Media[R]. Fort Collins: Colorado State University, 1964.
[28] ZHAI Q, RAHARDJO H, SATYANAGA A. Effects of residual suction and residual water content on the estimation of permeability function[J]. Geoderma, 2017, 303: 165–177. doi: 10.1016/j.geoderma.2017.05.019
[29] ZHAI Q, RAHARDJO H, SATYANAGA A. A pore-size distribution function based method for estimation of hydraulic properties of sandy soils[J]. Engineering Geology, 2018, 246: 288–292. doi: 10.1016/j.enggeo.2018.09.031
[30] JACKSON R D, REGINATO R J, VAN BAVEL C H M. Comparison of measured and calculated hydraulic conductivities of unsaturated soils[J]. Water Resources Research, 1965, 1(3): 375–380. doi: 10.1029/WR001i003p00375
[31] MUALEM Y. A Catalogue of the Hydraulic Properties of Unsaturated Soils[R]. Israel: Inst of Technol, 1976.
[32] PACHEPSKY Y, SCHERBAKOV R, VARALLYAY G, et al. On obtaining soil hydraulic conductivity curves from water retention curves[J]. Pochvovedenie, 1984, 10: 60–72.
[33] VEREECKEN H, MAES J, FEYEN J, et al. Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content[J]. Soil Science, 1989, 148(6): 389–403. doi: 10.1097/00010694-198912000-00001
[34] NEMES A, SCHAAP M G, LEIJ F J, et al. Description of the unsaturated soil hydraulic database UNSODA version 2.0[J]. Journal of Hydrology, 2001, 251(3/4): 151–162.
[35] SCHINDLER U G, MÜLLER L. Soil hydraulic functions of international soils measured with the Extended Evaporation Method (EEM) and the HYPROP device[J]. Open Data Journal for Agricultural Research, 2017, 3: 1–7.
[36] TOKUNAGA T K, WAN J M. Water film flow along fracture surfaces of porous rock[J]. Water Resources Research, 1997, 33(6): 1287–1295. doi: 10.1029/97WR00473
[37] TOKUNAGA T K, WAN J M, SUTTON S R. Transient film flow on rough fracture surfaces[J]. Water Resources Research, 2000, 36(7): 1737–1746. doi: 10.1029/2000WR900079
[38] LIU H H. A constitutive-relationship model for film flow on rough fracture surfaces[J]. Hydrogeology Journal, 2004, 12(2): 237–240.
[39] TOKUNAGA T K. Hydraulic properties of adsorbed water films in unsaturated porous media[J]. Water Resources Research, 2009, 45(6): W06415.
[40] LEBEAU M, KONRAD J M. A new capillary and thin film flow model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 2010, 46(12): W12554.
[41] TULLER M, OR D. Hydraulic conductivity of variably saturated porous media: film and corner flow in angular pore space[J]. Water Resources Research, 2001, 37(5): 1257–1276. doi: 10.1029/2000WR900328
[42] PETERS A. Simple consistent models for water retention and hydraulic conductivity in the complete moisture range[J]. Water Resources Research, 2013, 49(10): 6765–6780. doi: 10.1002/wrcr.20548
[43] SCARFONE R, WHEELER S J, LLORET-CABOT M. Conceptual hydraulic conductivity model for unsaturated soils at low degree of saturation and its application to the study of capillary barrier systems[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(10): 04020106. doi: 10.1061/(ASCE)GT.1943-5606.0002357
[44] YE W M, WAN M, CHEN B, et al. Temperature effects on the unsaturated permeability of the densely compacted GMZ01 bentonite under confined conditions[J]. Engineering Geology, 2012, 126: 1–7. doi: 10.1016/j.enggeo.2011.10.011
[45] 滕继东, 贺佐跃, 张升, 等. 非饱和土水气迁移与相变: 两类"锅盖效应"的发生机理及数值再现[J]. 岩土工程学报, 2016, 38(10): 1813–1821. doi: 10.11779/CJGE201610010 TENG Ji-dong, HE Zuo-yue, ZHANG Sheng, et al. Moisture transfer and phase change in unsaturated soils: physical mechanism and numerical model for two types of "canopy effect"[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1813–1821. (in Chinese) doi: 10.11779/CJGE201610010
[46] PENMAN H L. Gas and vapour movements in the soil: I The diffusion of vapours through porous solids[J]. The Journal of Agricultural Science, 1940, 30(3): 437–462. doi: 10.1017/S0021859600048164
[47] MARSHALL T J. The diffusion of gases through porous media[J]. Journal of Soil Science, 1959, 10(1): 79–82. doi: 10.1111/j.1365-2389.1959.tb00667.x
[48] MILLINGTON R J. Gas diffusion in porous media[J]. Science, 1959, 130(3367): 100–102. doi: 10.1126/science.130.3367.100.a
[49] MILLINGTON R J, QUIRK J P. Permeability of porous solids[J]. Transactions of the Faraday Society, 1961, 57: 1200–1207. doi: 10.1039/tf9615701200
[50] LAI S H, TIEDJE J M, ERICKSON A E. In situ measurement of gas diffusion coefficient in soils[J]. Soil Science Society of America Journal, 1976, 40(1): 3–6. doi: 10.2136/sssaj1976.03615995004000010006x
[51] ABU-EL-SHA'R W, ABRIOLA L M. Experimental assessment of gas transport mechanisms in natural porous media: parameter evaluation[J]. Water Resources Research, 1997, 33(4): 505–516. doi: 10.1029/96WR03536
[52] EBRAHIMI-B N, GITIRANA GFN, FRENLUND D G, et al. A lower limit for the water permeability coefficient[C]// Quebec, QC, 57th Canadian Geotechnical Conference, 2004, Canada.
[53] ZHAI Q, RAHARDJO H, SATYANAGA A. Estimation of air permeability function from soil-water characteristic curve[J]. Canadian Geotechnical Journal, 2019, 56(4): 505–513. doi: 10.1139/cgj-2017-0579
[54] ZHAI Q, YE W M, RAHARDJO H, et al. Theoretical method for the estimation of vapour conductivity for unsaturated soil[J]. Engineering Geology, 2021, 295: 106447. doi: 10.1016/j.enggeo.2021.106447