Influences of construction defects of concrete cutoff walls on evolution laws of their leakage dissolution
-
摘要: 渗流作用下防渗墙施工缺陷对其渗透溶蚀演化进程影响较显著,为探究防渗墙相邻槽段搭接不良和墙底分叉对其渗透溶蚀的影响机制,结合流体和化学动力学相关理论,建立含施工缺陷的混凝土防渗墙渗透溶蚀耦合分析模型。结合某土工膜防渗砂砾石坝,研究两种缺陷形式下防渗墙中钙离子浓度、孔隙率及渗流特性变化规律。防渗墙钙离子浓度随服役年份增长不断降低,且缺陷越严重,浓度越低;孔隙率随服役年份呈指数型增长,服役100 a后孔隙率增大约1.83倍;防渗性能随服役年份、接缝宽度和分叉高度的增长而减弱,相比防渗墙完好工况,当接缝宽度3.0 cm或分叉高度为3 m时,服役100 a后防渗墙等效渗透系数分别增大了8.20倍,40.38倍,大坝总渗流量分别增大了4.49倍,5.81倍。研究成果可为土石坝工程长效服役性能评估提供理论支撑。Abstract: Under the action of seepage, the construction defects of cutoff walls have a significant impact on the evolution process of their leakage dissolution. In order to investigate the influence mechanism of poor overlapping of the adjacent groove sections and the bottom bifurcation of the cutoff walls, based on the relevant theories of fluid dynamics and chemical dynamics, a coupling analysis model for leakage dissolution of concrete cutoff walls with construction defects is proposed. Based on a sand gravel dam project with geomembrane anti-seepage measure, the variation laws of calcium ion concentration, porosity and seepage characteristics of the concrete cutoff walls under two types of defects are revealed. The calcium ion concentration of the cutoff walls decreases with the increase of service year, and the more serious the defects are, the lower the concentration of calcium ion is. The porosity increases exponentially with the service year, and the maximum porosity increases by about 1.83 times after 100 service years. The anti-seepage performance of the cutoff walls decreases with the increase of the service year, joint width and bifurcation height of the construction defects. Compared with the intact condition of the cutoff walls, when the joint width is 3.0 cm or the bifurcation height is 3 m, the equivalent permeability coefficient of the cutoff walls increases by 8.20 times and 40.38 times respectively after 100 service years, and the total seepage flow of the dam body and dam foundation increases by 4.49 times and 5.81 times, respectively. The research results can provide theoretical support for evaluating the long-term service performance of earth-rock dams.
-
Keywords:
- concrete cutoff wall /
- construction defect /
- leakage dissolution /
- porosity /
- seepage characteristic
-
-
表 1 各材料分区计算参数
Table 1 Parameters for different material zones
材料 θ0 k0/(m·s-1) D0/(m2·s-1) 化学反应动力学参数 A/(mol/(L·s)) n Ksp 常规混凝土 0.08 5.20×10-9 1.00×10-9 1.00×10-8 4.50 5.50×10-6 二级配混凝土 0.08 2.00×10-8 1.00×10-9 1.00×10-8 4.50 5.50×10-6 三级配混凝土 0.08 5.00×10-10 1.00×10-9 1.00×10-8 4.50 5.50×10-6 防渗帷幕 0.08 1.50×10-8 1.00×10-9 1.00×10-8 4.50 5.50×10-6 基岩 0.10 8.00×10-5 1.00×10-9 — — — 坝体排水孔 0.50 2.50×10-3 1.00×10-9 — — — 坝基排水孔 0.50 2.50×10-3 1.00×10-9 — — — 表 2 计算模型渗透溶蚀参数
Table 2 Leakage dissolution parameters of model
材料 k0/(m·s-1) θ0 D0/(m2·s-1) 化学反应动力学参数 A/((mol/(L·s)) n Ksp 防渗墙 1.00×10-9 0.12 1.00×10-9 1.00×10-8 4.50 5.50×10-6 砂砾石填筑料 2.40×10-5 0.30 1.00×10-9 — — — 截流戗堤 1.00×10-6 0.25 1.00×10-9 — — — 上游闭气料 3.00×10-7 0.20 1.00×10-9 — — — 复合土工膜 3.50×10-13 — — — — — 排水棱体 2.00×10-3 0.50 1.00×10-9 — — — 砂卵砾石层 4.60×10-4 0.40 1.00×10-9 — — — 粉砂质泥岩 1.10×10-6 0.20 1.50×10-9 — — — 表 3 计算工况表
Table 3 Design of calculation conditions
工况 服役年份/a 接缝宽度/cm 分叉高度/m 水位/m D-1 0~100 — — 上游:1880.50下游:1862.31 D-2 0~100 1.0 — D -3 0~100 2.0 — D -4 0~100 3.0 — D -5 0~100 — 1.0 D-6 0~100 — 2.0 D -7 0~100 — 3.0 -
[1] 沈振中, 田振宇, 徐力群, 等. 深覆盖层上土石坝心墙与防渗墙连接型式研究[J]. 岩土工程学报, 2017, 39(5): 939-945. doi: 10.11779/CJGE201705019 SHEN Zhenzhong, TIAN Zhenyu, XU Liqun, et al. Reasonable connection type for cutoff wall and core wall of earth-rock dams on deep overburden layers[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 939-945. (in Chinese) doi: 10.11779/CJGE201705019
[2] 王刚, 张建民, 濮家骝. 坝基混凝土防渗墙应力位移影响因素分析[J]. 土木工程学报, 2006, 39(4): 73-77. doi: 10.3321/j.issn:1000-131X.2006.04.015 WANG Gang, ZHANG Jianmin, PU Jialiu. An evaluation of the factors influencing the stress and deformation of concrete diaphragm wall in dams[J]. China Civil Engineering Journal, 2006, 39(4): 73-77. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.04.015
[3] 盛金昌, 赵坚, 速宝玉. 混凝土防渗墙开裂对坝基渗透稳定性的影响[J]. 水利水电科技进展, 2006, 26(1): 23-26. doi: 10.3880/j.issn.1006-7647.2006.01.007 SHENG Jinchang, ZHAO Jian, SU Baoyu. Effects of cracking of anti-seepage concrete wall on seepage stability of dam foundation[J]. Advances in Science and Technology of Water Resources, 2006, 26(1): 23-26. (in Chinese) doi: 10.3880/j.issn.1006-7647.2006.01.007
[4] 李少明. 防渗墙质量缺陷对土石坝渗流控制的影响[J]. 南水北调与水利科技, 2012, 10(5): 174-177, 169. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201205041.htm LI Shaoming. Effects of quality defects in anti-seepage wall on seepage control of the earth-rock dam[J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(5): 174-177, 169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201205041.htm
[5] 彭鹏, 单治钢, 宋汉周, 等. 反映坝基帷幕体防渗时效的多场耦合数值模拟[J]. 岩土工程学报, 2011, 33(12): 1847-1853. http://www.cgejournal.com/cn/article/id/14439 PENG Peng, SHAN Zhigang, SONG Hanzhou, et al. Coupling model for assessing anti-seepage behaviors of curtain of dam foundation[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1847-1853. (in Chinese) http://www.cgejournal.com/cn/article/id/14439
[6] 王少伟, 包腾飞. 渗透溶蚀对高混凝土坝长期变形影响的数值分析[J]. 长江科学院院报, 2020, 37(6): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006014.htm WANG Shaowei, BAO Tengfei. Numerical analysis on influence of leakage dissolution on long-term deformation of high concrete dam[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(6): 62-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB202006014.htm
[7] 张开来, 沈振中, 甘磊. 水泥基材料溶蚀试验研究进展[J]. 水利水电科技进展, 2018, 38(6): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201806017.htm ZHANG Kailai, SHEN Zhenzhong, GAN Lei. Advances in cement-based materials leaching test[J]. Advances in Science and Technology of Water Resources, 2018, 38(6): 86-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201806017.htm
[8] KAMALI S, MORANVILLE M, LECLERCQ S. Material and environmental parameter effects on the leaching of cement pastes: experiments and modelling[J]. Cement and Concrete Research, 2008, 38(4): 575-585. http://www.onacademic.com/detail/journal_1000034059586510_017d.html
[9] 盛金昌, 贾春兰, 张羽, 等. 水工混凝土渗流侵蚀渗透试验研究[J]. 水力发电学报, 2013, 32(6): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201306036.htm SHENG Jinchang, JIA Chunlan, ZHANG Yu, et al. Experimental study of seepage inflow erosion processes in concrete[J]. Journal of Hydroelectric Engineering, 2013, 32(6): 216-221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201306036.htm
[10] 李新宇, 方坤河. 混凝土渗透溶蚀过程中钙离子迁移过程数值模拟[J]. 长江科学院院报, 2008, 25(6): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200806022.htm LI Xinyu, FANG Kunhe. Numerical simulation of Ca-ion transportation during concrete leaching dissolution[J]. Journal of Yangtze River Scientific Research Institute, 2008, 25(6): 96-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB200806022.htm
[11] 霍吉祥, 苏社教, 马福恒, 等. 坝基帷幕防渗性能衰减的数值模拟[J]. 武汉大学学报(工学版), 2018, 51(1): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201801003.htm HUO Jixiang, SU Shejiao, MA Fuheng, et al. Numerical simulation of anti-seepage performance attenuation of dam curtain[J]. Engineering Journal of Wuhan University, 2018, 51(1): 21-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201801003.htm
[12] 张开来, 沈振中, 徐力群, 等. 考虑渗透溶蚀作用的防渗帷幕耐久性控制指标[J]. 水利学报, 2020, 51(2): 169-179. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002005.htm ZHANG Kailai, SHEN Zhenzhong, XU Liqun, et al. Durability control index of anti-seepage curtain considering the effect of advection-diffusion-driven leaching[J]. Journal of Hydraulic Engineering, 2020, 51(2): 169-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202002005.htm
[13] GÉRARD B, LE BELLEGO C, BERNARD O. Simplified modelling of calcium leaching of concrete in various environments[J]. Materials and Structures, 2002, 35(10): 632-640. doi: 10.1007%2FBF02480356.pdf
[14] YOKOZEKI K, WATANABE K, SAKATA N, et al. Modeling of leaching from cementitious materials used in underground environment[J]. Applied Clay Science, 2004, 26(1/2/3/4): 293-308. http://www.onacademic.com/detail/journal_1000035368217710_686e.html
[15] NAKARAI K, ISHIDA T, MAEKAWA K. Modeling of calcium leaching from cement hydrates coupled with micro-pore formation[J]. Journal of Advanced Concrete Technology, 2006, 4(3): 395-407. http://www.researchgate.net/profile/Koichi_Maekawa2/publication/228652993_Modeling_of_Calcium_Leaching_from_Cement_Hydrates_Coupled_with_Micro-Pore_Formation/links/547d0d850cf285ad5b0889b1.pdf
[16] 庞晓贇, 李乐, 桂强, 等. 沉管隧道壁中热-水-离子传输过程[J]. 硅酸盐学报, 2015, 43(2): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201502004.htm PANG Xiaoyun, LI Le, GUI Qiang, et al. Thermo-hydro-ionic transport in walls of sea immerged tube tunnel[J]. Journal of the Chinese Ceramic Society, 2015, 43(2): 144-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201502004.htm
[17] 贾攀, 佘成学. 水泥基材料渗透溶蚀有限元模拟方法[J]. 长江科学院院报, 2019, 36(5): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201905022.htm JIA Pan, SHE Chengxue. Finite element modeling of leakage dissolution of cement-based materials[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(5): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201905022.htm
[18] PHUNG Q T, MAES N, JACQUES D, et al. Modelling the evolution of microstructure and transport properties of cement pastes under conditions of accelerated leaching[J]. Construction and Building Materials, 2016, 115: 179-192. http://d.wanfangdata.com.cn/periodical/51e24e4ffd3ba5f09cd2f24d4416ed6d
[19] HUO J X, MA F H, JI X L. Porosity and permeability variations of a dam curtain during dissolution[J]. Water Science and Engineering, 2019, 12(2): 155-161. http://doc.paperpass.com/foreign/rgArti2019327340760.html
[20] 王晓梅, 李克非. 水泥基材料裂隙表面溶蚀过程[J]. 硅酸盐学报, 2011, 39(3): 525-530. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201103029.htm WANG Xiaomei, LI Kefei. Leaching behavior of fracture surfaces of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2011, 39(3): 525-530. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201103029.htm
[21] YOKOZEKI K, WATANABE K, HAYASHI D, et al. Modeling of ion diffusion coefficients in concrete considering with hydration and temperature effects[J]. Doboku Gakkai Ronbunshu, 2003, 2003(725): 131-142. http://www.jstage.jst.go.jp/A_PRedirectJournalInit?sryCd=jscej1984&noVol=2003&noIssue=725&kijiCd=2003_725_131&screenID=AF06S010
[22] COCHEPIN B, TROTIGNON L, BILDSTEIN O, et al. Approaches to modelling coupled flow and reaction in a 2D cementation experiment[J]. Advances in Water Resources, 2008, 31(12): 1540-1551. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0309170808000870&originContentFamily=serial&_origin=article&_ts=1478478978&md5=a4e61695873f2e16559db0b497f1b5c1
-
其他相关附件