• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

冻融循环作用下砂岩的力学特性及细观损伤本构模型研究

肖鹏, 陈有亮, 杜曦, 王苏然

肖鹏, 陈有亮, 杜曦, 王苏然. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究[J]. 岩土工程学报, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
引用本文: 肖鹏, 陈有亮, 杜曦, 王苏然. 冻融循环作用下砂岩的力学特性及细观损伤本构模型研究[J]. 岩土工程学报, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219
Citation: XIAO Peng, CHEN Youliang, DU Xi, WANG Suran. Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805-815. DOI: 10.11779/CJGE20220219

冻融循环作用下砂岩的力学特性及细观损伤本构模型研究  English Version

基金项目: 

国家自然科学基金项目 10872133

上海市软科学研究领域重点项目 18692106100

详细信息
    作者简介:

    肖鹏(1997—),男,博士研究生,主要从事岩石力学、微生物矿化研究。E-mail:xiaopeng_seu@163.com

    通讯作者:

    陈有亮, E-mail:chenyouliang2001@163.com

  • 中图分类号: TU411;TD313

Mechanical properties of sandstone under freeze-thaw cycles and studies on meso-damage constitutive model

  • 摘要: 针对寒区岩体工程中岩石的冻融问题,选取砂岩为试样,通过进行室内冻融循环试验、扫描电子显微镜观测和三轴压缩试验对砂岩质量损失、微观结构和力学特性进行了分析。然后基于Lemaitre应变等效假设理论,通过引入能够反映岩石冻融破坏过程中的细观冻融损伤变量和力损伤变量来描述岩石材料的劣化程度及损伤演化规律,并采用连续损伤力学理论,建立了冻融与围压耦合作用下岩石的损伤演化方程及细观损伤本构模型。采用理论推导的方法得出所需的模型参数表达式,最后利用冻融岩石的三轴压缩试验数据对该模型的合理性和准确性进行了验证。将试验曲线的峰值点与模型理论曲线的峰值点进行对比,结果表明两者吻合度较好,该损伤本构模型能够较好地反映岩石三轴压缩过程的应力-应变峰值特性,验证了该模型及模型参数确定方法的合理性与可靠性。该模型拓展了岩石在冻融与围压耦合作用下的损伤模型,进一步的揭示了岩石在冻融与围压耦合作用下的损伤机制和破坏规律。
    Abstract: To address the freeze-thaw problems of rocks in cold-zone rock engineering, the sandstone is selected as the specimen and analyzed for mass loss, microstructure and mechanical properties by conducting the cyclic indoor freeze-thaw tests, scanning electron microscope observations and triaxial compression tests. Then, based on the Lemaitre strain equivalence hypothesis theory, the meso-scale freeze-thaw damage variables and force damage variables are introduced to reflect the process of freeze-thaw damage of the rocks to describe the degree of deterioration of rock materials and the damage evolution law. Using the continuous damage mechanics theory, the damage evolution equation and the meso-scale damage constitutive model for the rocks under the coupling of freeze-thaw and cofining pressure are established. The theoretical derivation method is used to obtain the required expressions for model parameters. Finally, the rationality and accuracy of the model are verified by the triaxial compression test data of freeze-thaw of the rocks. The peak points of the test curve are compared with those of the theoretical curve by the model, and the results show that they are in good agreement. The damage constitutive model can better reflect the stress-strain peak characteristics of the rocks during triaxial compression, which verifies the rationality and reliability of the proposed model and the relevant method for determining the model parameters. This model expands the damage model for the rocks under the coupling of freeze-thaw and confining pressure and further reveals their damage mechanism and failure law.
  • 图  1   砂岩冻融试验试块

    Figure  1.   Freeze-thaw test block of sandstone

    图  2   TZW-3000II岩石真三轴流变试验机

    Figure  2.   TZW-3000II rock true triaxial rheological testing machine

    图  3   WGD-501立式冻融机

    Figure  3.   WGD-501 vertical freeze-thaw machine

    图  4   质量变化率随冻融循环温度变化关系曲线

    Figure  4.   Variation of mass change rate with temperature of freeze-thaw cycle

    图  5   纵波波速变化率随冻融循环温度变化关系曲线

    Figure  5.   Variation of change rate of longitudinal wave velocity with temperature of freeze-thaw cycle

    图  6   自然状态下和冻融循环80次处理后砂岩的表面细观结构

    Figure  6.   Surface microstructures of sandstone in natural state and after 80 freeze-thaw cycles

    图  7   不同围压和不同冻融温度作用下的应力-应变曲线

    Figure  7.   Stress-strain curves under different confining pressures and freeze-thaw temperatures

    图  8   孔隙率随冻融循环次数的拟合曲线

    Figure  8.   Fitting curves of porosity with number of freeze-thaw cycles

    图  9   冻融循环0次时不同围压作用下试验曲线和理论曲线的峰值点图

    Figure  9.   Peak points of experimental and theoretical curves under different confining pressures after 0 freeze-thaw cycle

    图  10   冻融循环5次时不同围压作用下试验曲线和理论曲线的峰值点图

    Figure  10.   Peak points of experimental and theoretical curves under different confining pressures after 5 freeze-thaw cycles

    图  11   冻融循环10次时不同围压作用下试验曲线和理论曲线的峰值点图

    Figure  11.   Peak points of experimental and theoretical curves under different confining pressures after 10 freeze-thaw cycles

    图  12   冻融循环20次时不同围压作用下试验曲线和理论曲线的峰值点图

    Figure  12.   Peak points of experimental and theoretical curves under different confining pressures after 20 freeze-thaw cycles

    图  13   冻融循环40次时不同围压作用下试验曲线和理论曲线的峰值点图

    Figure  13.   Peak points of experimental and theoretical curves under different confining pressures after 40 freeze-thaw cycles

    表  1   不同冻融循环次数下岩样的核磁共振孔隙率

    Table  1   NMR porosities of rock samples under different freeze-thaw cycles

    冻融循环次数 0 5 10 20 30 40 50
    孔隙率ϕn/% 5.58 5.76 6.06 6.20 6.33 6.43 6.76
    下载: 导出CSV

    表  2   岩样的核磁共振孔隙率

    Table  2   NMR porosities of rock samples

    冻融循环次数 10 30 50 70
    孔隙率ϕn/% 2.83 4.09 7.43 10.13
    下载: 导出CSV

    表  3   不同冻融循环次数作用下岩样的核磁共振孔隙率拟合值

    Table  3   Fitting values of NMR porosity of rock samples under different freeze-thaw cycles

    冻融循环次数 0 5 10 20 40
    孔隙率拟合值/% 2.062 2.355 2.83 3.502 5.662
    下载: 导出CSV

    表  4   不同冻融循环次数和不同围压下红砂岩模型计算参数表

    Table  4   Model parameters of red sandstone under different freeze-thaw cycles and confining pressures

    冻融次数 σ3/MPa σp /MPa εp /% m F0/MPa
    0 0 4.230 0.4 4.634 1.987
    2 14.572 1.1 6.869 3.369
    4 19.652 1.3 17.460 3.383
    6 24.866 1.6 25.257 3.406
    5 0 4.020 0.5 3.127 1.653
    2 13.101 1.1 6.556 3.120
    4 19.132 1.3 13.958 3.113
    6 24.347 1.7 10.828 3.607
    10 0 3.800 0.5 3.225 1.651
    2 12.701 1.1 4.287 3.124
    4 18.910 1.5 5.562 3.602
    6 23.519 1.9 5.116 3.880
    20 0 3.749 0.6 3.007 1.466
    2 11.356 1.2 2.701 2.678
    4 18.100 1.8 2.887 3.591
    6 22.903 2.1 3.499 4.031
    40 0 3.301 0.6 1.286 0.836
    2 10.570 1.5 1.408 2.197
    4 17.121 1.9 2.367 3.492
    6 21.274 2.5 2.121 3.722
    下载: 导出CSV
  • [1] 汤连生, 张鹏程, 王思敬. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(4): 526-531. doi: 10.3321/j.issn:1000-6915.2002.04.015

    TANG Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 526-531. (in Chinese) doi: 10.3321/j.issn:1000-6915.2002.04.015

    [2]

    WIEDERHORN S M. A chemical interpretation of static fatigue[J]. Journal of the American Ceramic Society, 1972, 55(2): 81-85. doi: 10.1111/j.1151-2916.1972.tb11215.x

    [3] 霍润科, 李宁, 刘汉东. 酸性环境下类砂岩材料波速特性分析[J]. 岩土力学, 2005, 26(4): 608-611. doi: 10.3969/j.issn.1000-7598.2005.04.021

    HUO Runke, LI Ning, LIU Handong. Analysis of characteristics of longitudinal wave velocity of mortar subjected to hydrochloric acid attack[J]. Rock and Soil Mechanics, 2005, 26(4): 608-611. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.04.021

    [4] 丁梧秀, 冯夏庭. 化学腐蚀下灰岩力学效应的试验研究[J]. 岩石力学与工程学报, 2004, 23(21): 3571-3576. doi: 10.3321/j.issn:1000-6915.2004.21.002

    DING Wuxiu, FENG Xiating. Testing study on mechanical effect for limestone under chemical erosion[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3571-3576. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.21.002

    [5] 杨更社, 蒲毅彬, 马巍. 寒区冻融环境条件下岩石损伤扩展研究探讨[J]. 实验力学, 2002, 17(2): 220-226. doi: 10.3969/j.issn.1001-4888.2002.02.015

    YANG Gengshe, PU Yibin, MA Wei. Discussion on the damage propagation for the rock under the frost and thaw condition of frigid zone[J]. Journal of Experimental Mechanics, 2002, 17(2): 220-226. (in Chinese) doi: 10.3969/j.issn.1001-4888.2002.02.015

    [6] 何国梁, 张磊, 吴刚. 循环冻融条件下岩石物理特性的试验研究[J]. 岩土力学, 2004, 25(增刊2): 52-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm

    HE Guoliang, ZHANG Lei, WU Gang. Test study on physical characteristics of rock under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2004, 25(S2): 52-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200A.htm

    [7] 陈有亮, 王朋, 张学伟, 等. 花岗岩在化学溶蚀和冻融循环后的力学性能试验研究[J]. 岩土工程学报, 2014, 36(12): 2226-2235. doi: 10.11779/CJGE201412010

    CHEN Youliang, WANG Peng, ZHANG Xuewei, et al. Experimental research on mechanical properties of granite in chemical dissolution under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2226-2235. (in Chinese) doi: 10.11779/CJGE201412010

    [8] 韩铁林, 师俊平, 陈蕴生, 等. 不同化学腐蚀下砂岩冻融力学特性劣化的试验研究[J]. 固体力学学报, 2017, 38(6): 503-520. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201706003.htm

    HAN Tielin, SHI Junping, CHEN Hengchen, et al. Laboratory investigation on the mechanical properties of sandstone immersed in different chemical corrosion under freeze-thaw cycles[J]. Chinese Journal of Solid Mechanics, 2017, 38(6): 503-520. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX201706003.htm

    [9] 张君岳, 田镇, 刘桓兑, 等. 冻融红砂岩物理力学性质损伤演化试验研究[J]. 矿业研究与开发, 2020, 40(10): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202010015.htm

    ZHANG Junyue, TIAN Zhen, LIU Huandui, et al. Experimental research of physical and mechanical damage evolution of freeze-thaw red sandstone[J]. Mining Research and Development, 2020, 40(10): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK202010015.htm

    [10] 张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报, 2010, 29(3): 471-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm

    ZHANG Huimei, YANG Gengshe. Research on damage model of rock under coupling action of freeze-thaw and load[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 471-476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201003007.htm

    [11] 徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005, 24(17): 3076-3082. doi: 10.3321/j.issn:1000-6915.2005.17.012

    XU Guangmiao, LIU Quansheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076-3082. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.012

    [12] 孟祥振, 张慧梅, 康晓革. 含孔隙冻融岩石的损伤本构模型[J]. 西安科技大学学报, 2019, 39(4): 688-692. https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201904019.htm

    MENG Xiangzhen, ZHANG Huimei, KANG Xiaoge. Damage constitutive model of porous rock under freeze-thaw[J]. Journal of Xi'an University of Science and Technology, 2019, 39(4): 688-692. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201904019.htm

    [13] 杨涛, 霍树义, 金坎辉, 等. 冻融循环下砂岩损伤演化及本构模型[J]. 地质与勘探, 2020, 56(4): 826-831. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202004016.htm

    YANG Tao, HUO Shuyi, JIN Kanhui, et al. Damage evolution and constitutive model under freeze-thaw cycles[J]. Geology and Exploration, 2020, 56(4): 826-831. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT202004016.htm

    [14]

    MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974(232): 59-70.

    [15]

    SATAKE M. Stress-deformation and strength characteristics of soil under three difference principle stresses[J]. Proc of Japan Society of Civil Engineers, 1976, 246: 137-138.

    [16]

    MATSUOKA H, HOSHIKAWA T, UENO K. A general failure criterion and stress-strain relation for granular materials to metals[J]. Soils and Foundations, 1990, 30(2): 119-127.

    [17] 张二锋, 杨更社, 刘慧. 冻融循环作用下砂岩细观损伤演化规律试验研究[J]. 煤炭工程, 2018, 50(10): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201810013.htm

    ZHANG Erfeng, YANG Gengshe, LIU Hui. Experimental study on meso-damage evolution of sandstone under freeze-thaw cycles[J]. Coal Engineering, 2018, 50(10): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201810013.htm

    [18] 许玉娟, 周科平, 李杰林, 等. 冻融岩石核磁共振检测及冻融损伤机制分析[J]. 岩土力学, 2012, 33(10): 3001-3005, 3102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210022.htm

    XU Yujuan, ZHOU Keping, LI Jielin, et al. Study of rock NMR experiment and damage mechanism analysis under freeze-thaw condition[J]. Rock and Soil Mechanics, 2012, 33(10): 3001-3005, 3102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201210022.htm

    [19] 张蒙军. 冻融环境下红砂岩物理力学特性试验研究[D]. 西安: 西安科技大学, 2015.

    ZHANG Mengjun. The Experimental Studyon the Physical and Mechanical Properties of Red Sandstone under the Environment of Freeze-Thaw Environment[D]. Xi'an: Xi'an University of Science and Technology, 2015. (in Chinese)

图(13)  /  表(4)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 网络出版日期:  2023-04-16
  • 刊出日期:  2023-03-31

目录

    /

    返回文章
    返回