水库区大型堆积体灾变分析及对策研究

    湛正刚, 程瑞林, 孙卫, 张合作

    湛正刚, 程瑞林, 孙卫, 张合作. 水库区大型堆积体灾变分析及对策研究[J]. 岩土工程学报, 2022, 44(1): 194-200. DOI: 10.11779/CJGE202201020
    引用本文: 湛正刚, 程瑞林, 孙卫, 张合作. 水库区大型堆积体灾变分析及对策研究[J]. 岩土工程学报, 2022, 44(1): 194-200. DOI: 10.11779/CJGE202201020
    ZHAN Zheng-gang, CHENG Rui-lin, SUN Wei, ZHANG He-zuo. Disaster analysis and countermeasures of large accumulation in reservoir areas[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 194-200. DOI: 10.11779/CJGE202201020
    Citation: ZHAN Zheng-gang, CHENG Rui-lin, SUN Wei, ZHANG He-zuo. Disaster analysis and countermeasures of large accumulation in reservoir areas[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 194-200. DOI: 10.11779/CJGE202201020

    水库区大型堆积体灾变分析及对策研究  English Version

    基金项目: 

    国家重点研发计划项目 2017YFC1501100

    贵州省高层次创新人才项目 [2018]5630

    详细信息
      作者简介:

      湛正刚(1968—),男,正高级工程师,主要从事水利水电工程设计、研究和管理工作。E-mail: zhanzg_gyy@powerchina.cn

      通讯作者:

      孙卫, E-mail: 317764316@qq.com

    • 中图分类号: TU449

    Disaster analysis and countermeasures of large accumulation in reservoir areas

    • 摘要: RM水电站RS堆积体方量高达4700万m3,其规模巨大,距坝址较近,在水库蓄水过程中,受水动力作用影响,边坡的物理力学参数指标降低,有可能发生失稳破坏进而危害工程安全。分别采用刚体极限平衡法、虚功率法、有限差分法、有限元强度折减法以及三维数值模拟针对RS堆积体稳定性及灾变过程进行分析,结果表明,在天然状态下,边坡基本处于稳定状态,随着蓄水过程水位抬高,边稳失稳的可能性很大。边坡稳定状态由稳定—变形—局部失稳—较大规模失稳—大规模失稳,逐渐演变为灾变过程。模拟揭示堆积体在失稳条件下的涌浪产生过程及传播规律,对其进行风险分析。研究堆积体的治理原则和治理措施,提出预防为主的治理措施,研究成果可为类似工程问题提供有意义的参考。
      Abstract: The volume of RS accumulation of RM hydropower station is as large as 47 million m3, which is huge and close to the dam site. In the process of reservoir impoundment, the physical and mechanical parameters of the slope are reduced due to the hydrodynamic effect, which may cause instability and damage to the safety of the project. In this study, the rigid body limit equilibrium method, virtual power method, finite difference method, finite element strength reduction method and three-dimensional numerical simulation are used to analyze the stability and catastrophe process of RS accumulation body. The results show that the slope is basically stable in the natural state, and the possibility of edge stability and instability is great with the rise of water level in the process of water storage. The state of slope stability changes from the process of stability- deformation→local instability large→scale instability→largest→scale instability to the catastrophic process. The simulation reveals the generating process and propagation law of surge under instability, and its risk is analyzed. The research results can provide a meaningful reference for similar engineering problems.
    • 图  1   RS堆积体计算模型图及破坏模式

      Figure  1.   Model and failure mode of RS accumulation

      图  2   蓄水过程–安全系数关系曲线

      Figure  2.   Relationship between impoundment process and safety factor

      图  3   蓄水过程–安全系数关系曲线(R2剖面)

      Figure  3.   Relationship between impoundment process and safety factor for section R2

      图  4   蓄水过程–安全系数关系曲线(R1~R10剖面)

      Figure  4.   Relationship between impoundment process and safety factor for sections of R1 to R10

      图  5   蓄水过程滑坡区域

      Figure  5.   Landslide area during impoundment

      图  6   堆积体边坡蓄水失稳过程

      Figure  6.   Process of impoundment and instability of accumulation slope

      图  7   RS堆积体三维地质模型

      Figure  7.   3D-geological model of RS accumulation

      图  8   堆积体强度与变形关系曲线

      Figure  8.   Relationship between strength and deformation of accumulation

      图  9   涌浪分析计算所用三维地质模型

      Figure  9.   Three-dimensional geological model for surge analysis and calculation

      图  10   监测点分布情况示意图

      Figure  10.   Distribution of monitoring points

      图  11   库区RS下游监测点的水位过程线

      Figure  11.   Hydrograph of water level of RS downstream monitoring point

      图  12   坝体周围监测点的水位过程线

      Figure  12.   Hydrograph of water level of monitoring points around dam

      表  1   RS堆积体稳定计算岩土体物理力学参数取值表

      Table  1   Physical and mechanical parameters of rock and soil for stability calculation of RS accumulation

      土层编号 物质组成 重度/(kN·m-3) 水上天然抗剪强度 水下饱和抗剪强度
      天然 饱和 黏聚力/kPa 内摩擦角/(°) 黏聚力/kPa 内摩擦角/(°)
      ①上部 较松散的碎砾石层 22.0 23.0 10 34.5 5 30.5
      ②中部 有一定胶结的含细粒土砾 21.0 22.5 50 33.0 25 29.5
      ③下部 碎石土夹少量砂卵砾石 21.5 22.5 20 35.5 10 31.5
      下载: 导出CSV

      表  2   RS堆积体3种滑况最高滑速计算成果

      Table  2   Calculated results of maximum sliding velocity of RS accumulation under three sliding conditions

      滑况 滑动模式 最小安全系数K 滑坡体高度H/m 方量/(104 m3) 最高滑速值/(m·s-1)
      滑况1 整体滑动 1.22 67.75 2865.9 18~27
      滑况2 底层滑动 1.01 58.32 1397.3 23
      滑况3 上层滑动 1.22 136.83 1977.4 25~35
      下载: 导出CSV

      表  3   RS堆积体滑坡可传播涌浪浪高计算成果

      Table  3   The calculation results of surge height can be spread by RS accumulation landslide

      滑况 滑速/(m·s-1) 首浪高度/m 可传播浪计算代表值/m 坝前浪高/m 坝顶波浪爬高高程/m
      滑况1 18 26.8 7.17 5.42 2906.44
      27 29.8
      滑况2 23 27.9 5.25
      敏感性分析1 5 13.4 3.66 2.77 2900.69
      敏感性分析2 10 21.5 5.73 4.43 2904.25
      下载: 导出CSV
    • [1] 王自高. 西南地区深切河谷大型堆积体工程地质研究[D]. 成都: 成都理工大学, 2015.

      WANG Zi-gao, Engineering Geological Study on Large Quaternary Deposits in the Deeply Valley Southwestern China[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese)

      [2] 王自高, 胡瑞林, 张瑞, 等. 大型堆积体岩土力学特性研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3836–3843. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2107.htm

      WANG Zi-gao, HU Rui-lin, ZHANG Rui, et al. Study of geotechnical mechanical characteristics of a large soil-rock mixture in a hydropower project[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3836–3843. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2107.htm

      [3] 陈祖煜. 岩质边坡稳定分析: 原理·方法·程序[M]. 北京: 中国水利水电出版社, 2005.

      CHEN Zu-yu. Rock Slope Stability Analysis: Theory Methods and Programs[M]. Beijing: China WaterPower Press, 2005. (in Chinese)

      [4] 徐文杰. 大型土石混合体滑坡空间效应与稳定性研究[J]. 岩土力学, 2009, 30(增刊2): 328–333. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2071.htm

      XU Wen-jie. Study of spatial effect and stability of large scale soil-rock mixture landslide[J]. Rock and Soil Mechanics, 2009, 30(S2): 328–333. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2071.htm

      [5] 张玉, 徐卫亚, 石崇, 等. 大型滑坡堆积体稳定性的三维数值分析[J]. 岩土力学, 2011, 32(11): 3487–3496. doi: 10.3969/j.issn.1000-7598.2011.11.047

      ZHANG Yu, XU Wei-ya, SHI Chong, et al. Three-dimensional numerical analysis of stability of large-scale landslide accumulation body[J]. Rock and Soil Mechanics, 2011, 32(11): 3487–3496. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.11.047

      [6] 吴火珍, 冯美果, 焦玉勇, 等. 降雨条件下堆积层滑坡体滑动机制分析[J]. 岩土力学, 2010, 31(增刊1): 324–329. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1053.htm

      WU Huo-zhen, FENG Mei-guo, JIAO Yu-yong, et al. Analysis of sliding mechanism of accumulation horizon landslide under rainfall condition[J]. Rock and Soil Mechanics, 2010, 31(S1): 324–329. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2010S1053.htm

      [7] 王自高, 胡瑞林, 张瑞, 等. 大型堆积体岩土力学特性研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3836–3843. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2107.htm

      WANG Zi-gao, HU Rui-lin, ZHANG Rui, et al. Study of geotechnical mechanical characteristics of a large soil-rock mixture in a hydropower project[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3836–3843. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2107.htm

      [8] 朱继良, 黄润秋. 某水电站坝前堆积体稳定性的三维数值模拟分析[J]. 岩土力学, 2005, 26(8): 1318–1322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200508027.htm

      ZHU Ji-liang, HUANG Run-qiu. Study on stability of talus slope in front of a dam in a huge hydroelectric station by using 3D numerical simulation[J]. Rock and Soil Mechanics, 2005, 26(8): 1318–1322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200508027.htm

      [9] 徐卫亚, 周伟杰, 闫龙. 降雨型堆积体滑坡渗流稳定性研究进展[J]. 水利水电科技进展, 2020, 40(4): 87–94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202004015.htm

      XU Wei-ya, ZHOU Wei-jie, YAN Long. Research progress on seepage stability of rainfall-induced accumulation landslide[J]. Advances in Science and Technology of Water Resources, 2020, 40(4): 87–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD202004015.htm

      [10] 杨继红, 王俊梅, 董金玉, 等. 水库蓄水过程中堆积体边坡瞬态稳定性分析[J]. 岩土力学, 2011, 32(增刊1): 464–470. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1084.htm

      YANG Ji-hong, WANG Jun-mei, DONG Jin-yu, et al. Analysis of transient stability of deposits slope in process of reservoir impounding[J]. Rock and Soil Mechanics, 2011, 32(S1): 464–470. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S1084.htm

      [11] 孙志亮, 孔令伟, 郭爱国, 等. 地震作用下堆积体边坡的坡面变形与失稳机制[J]. 岩土力学, 2015, 36(12): 3465–3472, 3481. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512017.htm

      SUN Zhi-liang, KONG Ling-wei, GUO Ai-guo, et al. Surface deformations and failure mechanisms of deposit slope under seismic excitation[J]. Rock and Soil Mechanics, 2015, 36(12): 3465–3472, 3481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512017.htm

      [12] 中国电建集团贵阳勘测设计研究院有限公司. 库区滑坡涌浪特征及传播评估[R]. 贵阳: 中国电建集团贵阳勘测设计研究院有限公司, 2017.

      Power China Guiyang Engineering Co. LTD. Characteristics and Propagation Assessment of Landslide Surge in Reservoir Area[R]. Guiyang: Power China Guiyang Engineering Co. LTD, 2017. (in Chinese)

    图(12)  /  表(3)
    计量
    • 文章访问数: 
    • HTML全文浏览量:  0
    • PDF下载量: 
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-04-18
    • 网络出版日期:  2022-09-22
    • 刊出日期:  2021-12-31

    目录

      /

      返回文章
      返回