• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑蠕变特性的高应力软岩隧道变形预测方法与实践

郭新新, 汪波, 王振宇, 于家武

郭新新, 汪波, 王振宇, 于家武. 考虑蠕变特性的高应力软岩隧道变形预测方法与实践[J]. 岩土工程学报, 2023, 45(3): 652-660. DOI: 10.11779/CJGE20220058
引用本文: 郭新新, 汪波, 王振宇, 于家武. 考虑蠕变特性的高应力软岩隧道变形预测方法与实践[J]. 岩土工程学报, 2023, 45(3): 652-660. DOI: 10.11779/CJGE20220058
GUO Xinxin, WANG Bo, WANG Zhenyu, YU Jiawu. Methods and practices for deformation prediction in high-stress soft rock tunnels considering creep characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 652-660. DOI: 10.11779/CJGE20220058
Citation: GUO Xinxin, WANG Bo, WANG Zhenyu, YU Jiawu. Methods and practices for deformation prediction in high-stress soft rock tunnels considering creep characteristics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 652-660. DOI: 10.11779/CJGE20220058

考虑蠕变特性的高应力软岩隧道变形预测方法与实践  English Version

基金项目: 

国家自然科学基金项目 U2034205

甘肃省科技计划项目 19ZD2GA005

中铁隧道集团二处有限公司科技研发计划项目 2020-05

详细信息
    作者简介:

    郭新新(1990—),男,博士,副研究员,主要从事隧道工程方面的教学和科研工作。E-mail: zj_gxinxin@163.com

    通讯作者:

    汪波, E-mail: ahbowang@163.com

  • 中图分类号: TU431;U45

Methods and practices for deformation prediction in high-stress soft rock tunnels considering creep characteristics

  • 摘要: 为研究高应力软岩蠕变特性对隧道围岩变形预测的影响,以木寨岭公路隧道为依托,首先采用三维计算模型与多元线性回归相结合的方法分析初始地应力场,并结合围岩段落划分,选择典型计算断面;其次,提出基于[BQ]值的围岩参数取值方法,确定典型计算断面的围岩参数;而后,开展基于M-C模型和Cvsic模型的断面变形计算,剖析岩体蠕变特性对围岩变形的影响;最终,对比了预测结果与实际围岩变形。结果表明:①岩体蠕变特性对围岩变形具有明显增大效应,围岩位移增长量与横断面平均主应力呈正相关;②围岩条件越差,蠕变增大效应越显著;横断面平均主应力越大,蠕变增大效应中位移增长量越大,而位移增长率变化不明显;③蠕变特性对围岩变形等级预测有明显影响,M-C模型预测结果弱于Cvisc模型,与实际围岩变形情况存在较大差异。研究结果为在高应力软岩隧道变形预测中引入岩体蠕变效应奠定了实践基础。
    Abstract: To study the influences of high-stress soft rock creep characteristics on deformation prediction of surrounding rock of tunnels, the Muzhailing highway tunnel is taken as the support project. Firstly, the initial ground stress field is analyzed using a three-dimensional simulation model combined with multiple linear regression. The typical calculation sections are selected in conjunction with the section division of the surrounding rock. Secondly, the relevant method based on the [BQ] value is proposed to determine the parameters of the surrounding rock in the typical calculation section. Then, the section deformation is calculated based on the M-C model and the Cvsic model to analyze the influences of the creep characteristics of rock on the deformation of the surrounding rock. Finally, the predicted results are compared with the actual ones. The results show that: (1) The creep characteristics of rock mass have significant increase effects on the deformation, and the displacement growth rate is positively correlated with the average principal stress of cross-section. (2) The worse the surrounding rock condition, the more pronounced the creeping increase effects. The greater the average principal stress of the cross-section, the larger the displacement growth rate in the creep increase effects, while the change in the displacement growth rate is less noticeable. (3) The creep characteristics have significant effects on the prediction of the deformation level of the surrounding rock. The predicted results by the M-C model are weaker than those by the Cvisc model, which are pretty different from the actual deformations of the surrounding rock. The results lay a practical foundation for introducing the creep effects into the deformation prediction of high-stress soft rock tunnels.
  • 图  1   实测应力分布

    Figure  1.   Distribution of measured stress

    图  2   隧址区三维地质模型

    Figure  2.   Three-dimensional geological model

    图  3   模型加载示意图

    Figure  3.   Model loading

    图  4   初始应力场分布规律

    Figure  4.   Distribution laws of initial stress field

    图  5   隧道计算模型图

    Figure  5.   Model for tunnel calculation

    图  6   最大位移

    Figure  6.   Maximum displacement

    图  7   Cvisc模型最大位移增长量、增长率

    Figure  7.   Maximum displacement increments and growth rates by Cvisc model

    图  8   蠕变增大效应与应力场关系

    Figure  8.   Relationship between creep increase effect and stress field

    图  9   不同岩性时,蠕变增大效应与XZ向平均应力关系曲线

    Figure  9.   Relation curve between creep increase effect and XZ average stress under different lithologies

    图  10   不同围岩本构模型变形等级预测结果

    Figure  10.   Predicted results of deformation grade of different constitutive models for surrounding rock

    图  11   典型断面位移

    Figure  11.   Displacements of typical section

    表  1   各岩层的单轴饱和抗压强度

    Table  1   Uniaxial saturated compressive strengths of rock strata

    统计项目 单轴饱和极限抗压强度
    统计指标岩土名称 统计个数n 范围值 算术平均值fm 标准差σf 变异系数δ 修正系数 标准值
    炭质板岩
    (P1
    30 11.23~45.66 28.56 7.99 0.28 0.91 26.0
    炭质板岩
    (C1
    6 16.37~41.24 25.48 8.53 0.33 0.75 19.2
    断层压碎岩 8 12.12~15.94 14.00 1.40 0.10 0.93 13.00
    注:已剔除异常值。
    下载: 导出CSV

    表  2   主要岩层物理力学参数

    Table  2   Main physical and mechanical parameters of rock strata

    岩体类型 变形模量E/GPa 泊松比 重度/(kN·m-3)
    中风化炭质板岩(P1 2.0 0.35 27.0
    断层压碎岩 1.5 0.40 27.0
    中风化灰岩(C1 6.0 0.30 27.0
    中风化炭质板岩(C1 3.0 0.35 27.0
    下载: 导出CSV

    表  3   N2钻孔主应力反演与实测对比

    Table  3   Comparison between inversion and measurement of N2 principal stress

    钻孔编号 测点 SH/MPa Sh/MPa Sv/MPa
    实测值 回归值 绝对误差 相对误差 实测值 回归值 绝对误差 相对误差 实测值 回归值 绝对误差 相对误差
    N2 1 25.7 25.1 0.6 2.3% 16.8 20.5 3.7 22.2% 10.7 12.8 2.1 19.2%
    2 24.1 25.4 1.3 5.7% 17.0 20.9 3.9 23.0% 11.1 13.3 2.2 19.1%
    下载: 导出CSV

    表  4   围岩弹塑性参数

    Table  4   Elastic-plastic parameters of surrounding rock

    岩体类型 界限 变形模量E/GPa 泊松比ν 黏聚力c/MPa 内摩擦角φ/(°) 重度γ/(kN·m-3) 备注
    炭质板岩 上限 2.00 0.35 0.80 28 27.0 [BQ]=214
    下限 1.20 0.38 0.50 25 27.0 [BQ]=54
    断层压碎岩 1.20 0.39 0.45 24 27.0
    下载: 导出CSV

    表  5   木寨岭隧道围岩蠕变参数

    Table  5   Creep parameters of surrounding rock in Muzhailing tunnel

    围岩岩性 Maxwell剪切模量GM/GPa Maxwell黏度ηM/(GPa·h-1) Kelvin剪切模量GK/GPa Kelvin黏度ηK/(GPa·h-1)
    炭质板岩 1.00 8300 2.00 138
    断层压碎岩 0.75 6225 1.50 103.50
    注:灰岩蠕变参数按炭质板岩参数选取。
    下载: 导出CSV

    表  6   木寨岭公路隧道变形预测相关计算资料(左线)

    Table  6   Data of deformation prediction of Muzhailing highway tunnel (left line)

    段落起讫里程
    (ZK)
    主要岩性 [BQ]均值 计算断面1 计算断面2 段落起讫里程
    (ZK)
    主要岩性 [BQ]均值 计算断面1 计算断面2
    212+000—+185 190.5 211+900 212+100 216+005—217+100 171 216+100 217+100
    212+185—+385 54 212+200 212+300 217+100—+300 54.3 217+100 217+300
    212+385—+585 212+400 212+500 217+300—+520 217+300 217+500
    212+585—+785 54 212+600 212+700 217+520—+720 54.3 217+600 217+700
    212+785—213+355 189 212+800 213+200 217+720—219+030 214 217+700 219+000
    213+355—+555 92.8 213+400 213+500 219+030—+230 84.3 219+100 219+200
    213+555—+715 213+600 213+700 219+230—219+610 219+300 219+600
    213+715—+915 92.8 213+800 213+900 219+610—810 84.3 219+700 219+800
    213+915—214+285 190 214+000 214+200 219+810—221+340 203 219+900 221+100
    214+285—+385 114 214+300 221+340—+540 92.5 221+400 221+500
    214+385—+505 214+400 214+500 221+540—221+690 221+600
    214+505—+705 93 214+600 214+700 221+690—+890 92.5 221+700 221+800
    214+705—+830 133 214+800 221+890—222+810 196.8 221+900 222+800
    214+830—215+030 54.3 214+900 215+000 222+810—223+010 92.5 222+900 223+000
    215+030—+150 215+100 223+010—+105 223+100
    215+150—+635 54.3 215+400 215+600 223+105—+305 92.5 223+200 223+300
    215+635—+805 215+700 215+800 223+305—224+000 190.6 223+400 224+000
    215+805—216+005 54.3 215+900 216+000
    注:岩性①为炭质板岩,岩性②为断层压碎岩;里程K212前、及K224后,因垂直应力小,地应力场模拟出现明显偏差,予以剔除。
    下载: 导出CSV
  • [1]

    TIAN Siming, WANG Wei, GONG Jiangfeng. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308-325.

    [2]

    LI Zhijun, GUO Xinxin, MA Zhenwang, et al. Research status and high-strength pre-stressed primary (type) support system for tunnels with large deformation under squeezing conditions[J]. Tunnel Construction, 2020, 40(6): 755-782.

    [3]

    SINGH B, JETHWA J L, DUBE A K, et al. Correlation between observed support pressure and rock mass quality[J]. Tunnelling and Underground Space Technology, 1992, 7(1): 59-74. doi: 10.1016/0886-7798(92)90114-W

    [4]

    GOEL R K, JETHWA J L, PAITHANKAR A G. Tunnelling through the young Himalayas—a case history of the Maneri-Uttarkashi power tunnel[J]. Engineering Geology, 1995, 39(1/2): 31-44.

    [5]

    HOEK E, MARINOS P. Predicting squeeze (Part 2) [J]. Tunnels and Tunnelling International, 2000, 32(12): 33-36.

    [6] 陈卫忠, 田云, 王学海, 等. 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.

    CHEN Wei-zhong, TIAN Yun, WANG Xue-hai, et al. Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8): 3125-3134. (in Chinese)

    [7] 骆顺天, 杨凡杰, 周辉, 等. 基于统计分析的地下厂房边墙最大收敛变形多指标预测方法[J]. 岩土力学, 2020, 41(10): 3415-3424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010028.htm

    LUO Shuntian, YANG Fanjie, ZHOU Hui, et al. Multi-index prediction method for maximum convergence deformation of underground powerhouse side wall based on statistical analysis[J]. Rock and Soil Mechanics, 2020, 41(10): 3415-3424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010028.htm

    [8] 赵阳升. 岩体力学发展的一些回顾与若干未解之百年问题[J]. 岩石力学与工程学报, 2021, 40(7): 1297-1336. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107001.htm

    ZHAO Yangsheng. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1297-1336. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202107001.htm

    [9] 王道远, 刘佳, 张逴, 等. 高地应力深埋隧道断裂破碎带大变形控制方法现场试验研究[J]. 岩土工程学报, 2020, 42(4): 658-666. doi: 10.11779/CJGE202004008

    WANG Daoyuan, LIU Jia, ZHANG Chuo, et al. Field tests on large deformation control method for surrounding rock of deep tunnel in fault zone with high geostress[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(4): 658-666. (in Chinese) doi: 10.11779/CJGE202004008

    [10] 徐国文, 何川, 汪耀, 等. 流变荷载作用下隧道裂损二次衬砌结构安全性能研究[J]. 土木工程学报, 2016, 49(12): 114-123. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201612013.htm

    XU Guowen, HE Chuan, WANG Yao, et al. Study on the safety performance of cracked secondary lining under action of rheological load[J]. China Civil Engineering Journal, 2016, 49(12): 114-123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201612013.htm

    [11] 白国权. 隧道二衬严重开裂段病害综合治理研究[J]. 铁道标准设计, 2014, 58(8): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408035.htm

    BAI Guoquan. Research on comprehensive treatment for severe cracking of tunnel secondary lining[J]. Railway Standard Design, 2014, 58(8): 133-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201408035.htm

    [12] 孟陆波, 潘皇宋, 李天斌, 等. 鹧鸪山隧道二次衬砌开裂机理及支护时机探讨[J]. 现代隧道技术, 2017, 54(2): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201702020.htm

    MENG Lubo, PAN Huangsong, LI Tianbin, et al. Secondary lining cracking mechanism and the best time for supporting the zhegushan tunnel[J]. Modern Tunnelling Technology, 2017, 54(2): 129-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201702020.htm

    [13] 汪波, 李天斌, 何川, 等. 强震区软岩隧道大变形破坏特征及其成因机制分析[J]. 岩石力学与工程学报, 2012, 31(5): 928-936. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205010.htm

    WANG Bo, LI Tianbin, HE Chuan, et al. Analysis of failure properties and formatting mechanism of soft rock tunnel in meizoseismal areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 928-936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201205010.htm

    [14] 汪波, 何川, 吴德兴, 等. 苍岭特长公路隧道地应力场反演分析[J]. 岩土力学, 2012, 33(2): 628-634. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202051.htm

    WANG Bo, HE Chuan, WU Dexing, et al. Inverse analysis of in situ stress field of Cangling super-long highway tunnel[J]. Rock and Soil Mechanics, 2012, 33(2): 628-634. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201202051.htm

    [15] 代聪, 何川, 陈子全, 等. 超大埋深特长公路隧道初始地应力场反演分析[J]. 中国公路学报, 2017, 30(10): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710013.htm

    DAI Cong, HE Chuan, CHEN Ziquan, et al. Inverse analysis of initial ground stress field of deep embedded and extra long highway tunnel[J]. China Journal of Highway and Transport, 2017, 30(10): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201710013.htm

    [16] 李建伟, 雷胜友, 李振, 等. 木寨岭隧道炭质板岩流变力学特性研究[J]. 隧道建设, 2012, 32(1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201201011.htm

    LI Jianwei, LEI Shengyou, LI Zhen, et al. Investigation on rheologic properties of carbonaceous slate in muzhailing tunnel[J]. Tunnel Construction, 2012, 32(1): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201201011.htm

    [17] 宋勇军, 雷胜友, 邹翀, 等. 干燥与饱水状态下炭质板岩蠕变特性研究[J]. 地下空间与工程学报, 2015, 11(3): 619-625, 664. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503015.htm

    SONG Yongjun, LEI Shengyou, ZOU Chong, et al. Study on creep characteristics of carbonaceous slates under dry and saturated states[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 619-625, 664. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503015.htm

    [18] 陶志刚, 罗森林, 康宏伟, 等. 公路隧道炭质板岩变形规律及蠕变特性研究[J]. 中国矿业大学学报, 2020, 49(5): 898-906. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005010.htm

    TAO Zhigang, LUO Senlin, KANG Hongwei, et al. Analysis of deformation law and creep characteristics of carbonaceous slate in highway tunnel[J]. Journal of China University of Mining & Technology, 2020, 49(5): 898-906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005010.htm

    [19] 徐慧臣. 木寨岭深埋隧道板岩吸水强度软化结构效应实验研究[D]. 北京: 中国矿业大学(北京), 2019.

    XU Huichen. Experimental Study on Strength Softening of Slate after Water Absorption Due to Structure Effects for Muzhailing Deep-Buried Tunnel[D]. Beijing: China University of Mining & Technology, Beijing, 2019. (in Chinese)

    [20]

    WANG M N, WANG Z L, TONG J J, et al. Support pressure assessment for deep buried railway tunnels using BQ-index[J]. Journal of Central South University, 2021, 28(1): 247-263.

  • 其他相关附件

图(11)  /  表(6)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  57
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-12
  • 网络出版日期:  2023-03-15
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回