• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

饱和黄土液化流动性试验研究

马星宇, 王兰民, 王谦, 王平, 钟秀梅, 蒲小武, 刘富强

马星宇, 王兰民, 王谦, 王平, 钟秀梅, 蒲小武, 刘富强. 饱和黄土液化流动性试验研究[J]. 岩土工程学报, 2021, 43(S1): 161-165. DOI: 10.11779/CJGE2021S1029
引用本文: 马星宇, 王兰民, 王谦, 王平, 钟秀梅, 蒲小武, 刘富强. 饱和黄土液化流动性试验研究[J]. 岩土工程学报, 2021, 43(S1): 161-165. DOI: 10.11779/CJGE2021S1029
MA Xing-yu, WANG Lan-min, WANG Qian, WANG Ping, ZHONG Xiu-mei, PU Xiao-wu, LIU Fu-qiang. Experimental study on liquefaction fluidity of saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 161-165. DOI: 10.11779/CJGE2021S1029
Citation: MA Xing-yu, WANG Lan-min, WANG Qian, WANG Ping, ZHONG Xiu-mei, PU Xiao-wu, LIU Fu-qiang. Experimental study on liquefaction fluidity of saturated loess[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 161-165. DOI: 10.11779/CJGE2021S1029

饱和黄土液化流动性试验研究  English Version

基金项目: 

国家自然科学基金项目 U1939209

国家自然科学基金项目 51778590

地震科技星火计划项目 XH20057

详细信息
    作者简介:

    马星宇(1994— ),男,硕士研究生,主要从事岩土地震工程方面的研究。E-mail:1748214594@qq.com

    通讯作者:

    王兰民, E-mail:wanglm@gsdzj.gov.cn

  • 中图分类号: TU43

Experimental study on liquefaction fluidity of saturated loess

  • 摘要: 在室内动液化试验的基础上,对液化后的试样进行三轴剪切试验,并利用流体力学方法对黄土液化流动性进行了研究。研究表明:液化后的试样在受三轴剪切作用时,其表观黏度呈现先增大后减小的现象,即其流动特性会出现从“剪切稠化”到“剪切稀化”的转变。这种现象的出现可能与黄土特殊的结构性以及试验所采取的液化标准趋于保守有关。石碑塬地区特殊的地质环境和黄土的“剪切稀化”性质导致了低角度、长距离液化滑移灾害的发生。
    Abstract: Based on the laboratory dynamic liquefaction tests, the triaxial shear tests are carried out on the liquefied samples, and the liquefaction fluidity of loess is studied by using the fluid mechanics method.The results show that the apparent viscosity of liquefied samples increases first and then decreases when subjected to triaxial shear, that is, the flow characteristics will change from "shear thickening" to "shear thinning" .This phenomenon may be related to the special structure of loess and the conservative liquefaction standard adopted in the tests.The special geological environment and the "shear thinning" property of loess in Shibeiyuan area lead to the occurrence of low-angle and long-distance liquefaction slip disasters.
  • 图  1   试验加载过程

    Figure  1.   Loading process of tests

    图  2   孔压比-轴向应变-振次关系曲线

    Figure  2.   Relationship among pore pressure ratio, axial strain and vibration number

    图  3   剪应力-剪应变关系曲线

    Figure  3.   Curves of shear stress versus strain

    图  4   表观黏度-轴向应变变化曲线

    Figure  4.   Curves of apparent viscosity versus axial strain

    图  5   表观黏度-孔隙水压力-有效应力-轴向应变关系曲线

    Figure  5.   Relationship among apparent viscosity, pore water pressure, effective stress and axial strain

    图  6   石碑塬地区地层剖面[10]

    Figure  6.   Stratigraphic section of Shibeiyuan area

    表  1   试样物性指标

    Table  1   Basic physical parameters of loess samples

    参数取样深度/m颗粒组成/%孔隙比含水率/%塑性指数
    黏粒粉粒砂粒
    数值1512.433.853.87.09.17.6
    下载: 导出CSV
  • [1] 白铭学, 张苏民. 高烈度地震时黄土地层的液化移动[J]. 工程勘察, 1990, 18(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm

    BAI Ming-xue, ZHANG Su-min. Landslide induced by liquefaction of loessial soil during earthquakeofhighintensity[J]. Geotechnical Investigation and Surveying, 1990, 18(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC199006000.htm

    [2] 曹振中, 袁晓铭, 陈龙伟, 等. 汶川大地震液化宏观现象概述[J]. 岩土工程学报, 2010, 32(4): 645-650. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004029.htm

    CAO Zhen-zhong, YUAN Xiao-ming, CHEN Long-wei, et al. Summary ofliquefactionmacrophenomenainWenchuan Earthquake[J]. ChineseJournalofGeotechnical Engineering, 2010, 32(4): 645-650. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201004029.htm

    [3]

    WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019, 12(11): 940-945. doi: 10.1038/s41561-019-0448-x

    [4] 陈育民, 高星, 刘汉龙. 砂土液化流动变形的简化方法[J]. 岩土力学, 2013, 34(6): 1567-1573. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306009.htm

    CHEN Yumin, GAO Xing, LIU Han-long. Simplified method of flow deformation induced by liquefied sand[J]. Rock and Soil Mechanics, 2013, 34(6): 1567-1573. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306009.htm

    [5] 刘汉龙, 陈育民. 动扭剪试验中砂土液化后流动特性分析[J]. 岩土力学, 2009, 30(6): 1537-1541. doi: 10.3969/j.issn.1000-7598.2009.06.001

    LIU Hanlong, CHEN Yu-min. Analysis of flow characteristics of dynamic torsional tests on post liquefied sand[J]. Rock and Soil Mechanics, 2009, 30(6): 1537-1541. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.06.001

    [6] 潘华, 陈国兴, 刘汉龙. 饱和南京细砂液化后大变形特性试验研究[J]. 岩石力学与工程学报, 2011, 30(7): 1475-1481. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201107024.htm

    PAN Hua, CHEN Guo-xing, LIU Han-long. Study of behaviour of large post-liquefaction deformation in saturated Nanjing fine sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7): 1475-1481. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201107024.htm

    [7] 邹佑学, 王睿, 张建民. 砂土液化大变形模型在FLAC3D中的开发与应用[J]. 岩土力学, 2018, 39(4): 1525-1534. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804046.htm

    ZOU You-xue, WANG Rui, ZHANG Jian-min. Implementationofaplasticitymodelforlargepostliquefaction deformation of sand in FLAC3D[J]. Rock and Soil Mechanics, 2018, 39(4): 1525-1534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804046.htm

    [8]

    ISHIHARA K, OKUSA S, OYAGI N, et al. Liquefactioninduced flow slide in the collapsible loess deposit in soviet Tajik[J]. Soils and Foundations, 1990, 30(4): 73-89. doi: 10.3208/sandf1972.30.4_73

    [9] 杨振茂, 赵成刚, 王兰民, 等. 饱和黄土的液化特性与稳态强度[J]. 岩石力学与工程学报, 2004, 23(22): 3853-3860. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200422025.htm

    YANG Zhen-mao, ZHAO Cheng-gang, WANG Lanmin, et al. Liquefaction behaviors and steady state strength of saturated loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(22): 3853-3860. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200422025.htm

    [10] 王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19.

    WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese)

    [11] 土工试验方法标准GB/T 50123—2019.2019
    [12] 王兰民, 刘红玫, 李兰, 等. 饱和黄土液化机理与特性的试验研究[J]. 岩土工程学报, 2000, 22(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001015.htm

    WANG Lan-min, LIU Hong-mei, LI Lan, etal. Laboratory studyonthemechanismandbeheviorsof saturatedloessliquefaction[J]. ChineseJournalof Geotechnical Engineering, 2000, 22(1): 89-94(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001015.htm

    [13] 王谦, 王兰民, 袁中夏, 等. 汶川地震中甘肃清水田川黄土液化的试验研究[J]. 水文地质工程地质, 2012, 39(2): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202026.htm

    WANG Qian, WANG Lan-min, YUAN Zhong-xia, et al. A study of loess liquefaction induced by the Wenchuan Ms8.0 earthquake in tianchuan, Qingshui County, Gansu Province[J]. Hydrogeology&Engineering Geology, 2012, 39(2): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202026.htm

    [14] 王兰民, 刘琨, 孙军杰, 等. 饱和原状黄土液化基本特征的振动台试验研究[J]. 地震工程学报, 2015, 37(4): 1023-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201504019.htm

    WANG Lan-min, LIU Kun, SUN Jun-jie, et al. Shaking-table tests on liquefaction characteristics of saturatedundisturbedloess[J]. ChinaEarthquake Engineering Journal, 2015, 37(4): 1023-1028. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201504019.htm

    [15] 王谦, 王峻, 王兰民, 等. 石碑塬饱和黄土地震液化机制探讨[J]. 岩石力学与工程学报, 2014, 33(S2): 4168-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm

    WANG Qian, WANG Jun, WANG Lanmin, et al. Discussion on mechanism of seismic liquefaction of saturation loess in Shibei tableland, Guyuan city[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4168-4173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2097.htm

    [16] 王家鼎, 白铭学, 肖树芳. 强震作用下低角度黄土斜坡滑移的复合机理研究[J]. 岩土工程学报, 2001, 23(4): 445-449. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104014.htm

    WANG Jia-ding, BAI Ming-xue, XIAO Shufang. A study on compound mechanism of earthquakerelated sliding displacements on gently inclined loess slope[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 445-449. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200104014.htm

  • 期刊类型引用(2)

    1. 黄娟,胡钟伟,余俊,李东凯. 基于黏性流体力学的液化土中桩基桩顶阻抗研究. 岩土工程学报. 2023(05): 1063-1071 . 本站查看
    2. 柴少峰,王兰民,王平,郭海涛,夏晓雨,车高凤,王会娟. 石碑塬低角度黄土地层液化滑移特征与机理振动台试验研究. 岩土工程学报. 2023(12): 2565-2574 . 本站查看

    其他类型引用(3)

图(6)  /  表(1)
计量
  • 文章访问数:  244
  • HTML全文浏览量:  29
  • PDF下载量:  117
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-12-14
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回