Influences of increase of moisture content on surrounding soil pressure of large-span tunnels in loess
-
摘要: 以某黄土公路隧道为背景,通过室内常规三轴试验来获取原状Q2黄土的物理力学参数,并基于数值分析方法探讨因地表水分入渗或地下水位抬升引起的洞周围岩压力的变化规律,并提出考虑含水率影响的修正围岩压力算法。结果表明:①随着地表水入渗深度或地下水位抬升高度的增大,围岩压力呈增大趋势,且最大围岩压力比ψmax=1.1~3.5,最大收敛变形比ζmax=1.1~1.3;②初始含水率越低,其最大围岩压力比和收敛变形比越大,因地表水分入渗或水位抬升引起的围压放大效应越明显;③隧道埋深越浅,围岩压力分布越不均匀,“猫耳朵”形状越明显,埋深越大围岩压力分布相对均匀;④引入围岩压力比,提出了半数值半经验的修正隧道围岩压力计算公式,可考虑因黄土地层含水率增大引起的围岩压力放大效应。Abstract: Based on a highway tunnel in loess, the triaxial tests under different moisture contents of undisturbed Q2 loess are conducted to obtain the physical and mechanical parameters, and the numerical method is used to analyze the variation laws of surrounding earth pressure(SEP)under the infiltration of surface water or rising of underground water level.The modified methods for SEP are put forward by considering the effects of moisture content.The results show that:(1)With the increase of rising height of underground water level and the infiltration depth, the SEP exhibits a trend of increase, and the largest SEP ratio ψmax=1.1~3.5, the largest surrounding earth convergence deformation ratio ζmax=1.1~1.3.(2)The lower the initial moisture content of the loess stratum, the greater the maximum SEP ratio and convergence deformation ratio, and the more obvious the SEP amplification effect caused by water infiltration or rising of water level.(3)The shallower the buried depth of tunnel is, the more uneven the SEP distribution is, the more obvious the shape of "cat's ear" is, and the more evenly the SEP distribution is.(4)By introducing the SEP ratio, a semi-numerical and semi-empirical formula for calculating the SEP of the tunnel is put forward, and the amplification effect of SEP caused by the increase of moisture content of loess can be considered.
-
Keywords:
- loess stratum /
- tunnel /
- surrounding earth pressure /
- moisture content /
- distribution mode
-
-
表 1 原状Q2黄土物理指标
Table 1 Physical indexes of undisturbed Q2 loess
ρ/(g·cm-3) Gs w0/% 塑限wp/% 液限wl/% 1.71~1.95 2.72~2.73 18.3~21.5 19.5~20.4 28.5~30.0 注: w0为天然含水率,ρ为天然密度,wp为塑限,wl为液限。表 2 不同含水状态下Q2原状黄土力学参数
Table 2 Parameters of Q2 loess under different moisture contents
w/% E/MPa v c/kPa φ/(°) γ/(kN·m-3) 8 72.2 0.35 43.5 25.9 17.1 14 46.8 0.35 36.5 24.7 18.1 20 44.1 0.36 29.5 23.5 19.0 26 38.6 0.37 22.5 22.3 20.0 31 33.2 0.38 5.1 19.3 22.3 注: w为含水率,E为弹性模量,v为泊松比,c为内聚力,φ为内摩擦角,γ为重度。表 3 数值分析计算参数
Table 3 Parameters of numerical analysis
土层 γ/(kN·m-3) E/GPa 泊松比v 厚度/m 基岩 26 1.5 0.26 20 初期支护 24 25.5 0.22 0.30 二衬 25 28.5 0.20 0.60 -
[1] 邵生俊, 杨春鸣, 焦阳阳, 等. 湿陷性黄土隧道的工程性质分析[J]. 岩土工程学报, 2013, 35(9): 1580-1590. SHAO Sheng-jun, YANG Chun-min, JIAO Yang-yang, et al. Engineering properties of collapsible loess tunnel[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1580-1590. (in Chinese)
[2] 王成. 深埋黄土隧道初期支护破坏模式研究[J]. 铁道工程学报, 2018, 10: 65-68. WANG Cheng. Research on the Failure Modes of Initial Support for Deep-buried Tunnel in Loess[J]. Journal of railway engineering society, 2018, 10: 65-68. (in Chinese)
[3] 来弘鹏, 杨晓华, 林永贵. 黄土公路隧道病害分析与处治措施建议[J]. 公路, 2006, 6: 197-202. LAI Hong-peng, YANG Xiao-hua, LIN Yong-gui. Diseaseanalysisfor highway tunnel in loess and treatment countermeasures[J]. Highway, 2006, 6: 197-202. (in Chinese)
[4] 王明年, 郭军, 罗禄森, 等. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. 岩土力学, 2010, 31(4): 1157-1162. WANG Ming-nian, GUO Jun, LUO Lu-sen, et al. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. Rock and Soil Mechanics, 2010, 31(4): 1157-1162. (in Chinese)
[5] 张玉伟, 宋战平, 翁效林, 等. 大厚度黄土地层浸水湿陷对地铁隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 1030-1040. ZHANG Yu-wei, SONG Zheping, WENG Xiao-lin, et al. Model test study on influence of the collapsibility of large thickness loess stratum on subway tunnels[J]. ChineseJournalofRockMechanicsand Engineering, 2019, 38(5): 1030-1040. (in Chinese)
[6] 翁效林, 王俊, 王立新, 等. 黄土地层浸水湿陷对地铁隧道影响试验研究[J]. 岩土工程学报, 2016, 38(8): 1374-1380. WENG Xiao-lin, WANG Jun, WANG Li-xin, et al. Experimental research on influence of loess collapsibility on subwaytunnels[J]. ChineseJournalofGeotechnical Engineering, 2016, 38(8): 1374-1380. (in Chinese)
[7] 黄训洪. 黄土隧道地基纵向局部湿陷对结构的力学行为影响研究[D]. 成都: 西南交通大学, 2017. HUANG Xunhong. StudyontheInfluenceofLongitudinalLocal Collapsibility on the Mechanical Behavior of Loess Tunnel Foundation[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
[8] 田少敏. 黄土隧道环向局部湿陷的围岩力学特性研究[D]. 成都: 西南交通大学, 2017. TIAN Shao-min. Study on the Mechanical Properties of Surrounding Rock in the Circumferential Collapse of Loess Tunnel[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
[9] 李骏, 邵生俊, 李国良, 等. 黄土隧道的湿陷变形规律及其对衬砌结构的作用[J]. 岩石力学与工程学报, 2018, 37(1): 251-260. LI Jun, SHAO Sheng-jun, LI Guo-liang, et al. Collapse deformation of loess tunnel and its effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 251-260. (in Chinese)
[10] 梁燕, 赵桂娟, 谢永利, 等. 黄土增湿变形的数值模型[J]. 建筑科学与工程学报, 2007(3): 43-46. LIANG Yan, ZHAO Gui-juan, XIE Yong-li, LI Tong-lu, et al. Numerical Model of Loess Moistening Deformation[J]. Journal of Architecture and Civil Engineering, 2007(3): 43-46. (in Chinese)
[11] 陈福江. 黄土隧道围岩含水率变化对隧道形态影响的研究[D]. 成都: 西南交通大学, 2008. CHEN Fu-jiang. Study on the Tunnel's Modality Impact on Changes of Surrounding Rock Water Content at Loess Tunnel[D]. Chengdu: Southwest Jiaotong University, 2008. (in Chinese)
[12] 邓国华, 邵生俊, 胡伟. 考虑Q3黄土增湿特性的隧道围岩变形分析[J]. 地下空间与工程学报, 2007(8): 1455-1458. DENG Guo-hua, SHAO Sheng-jun, HU Wei. Analysisondefomrationoftunnelsurroundingloess considering its moisteinng characterisitc[J]. Chinese Journal of Underground Space and Engineering, 2007(8): 1455-1458. (in Chinese)
[13] 田俊峰, 叶万军, 杨更社. 含水率及冻融循环对黄土隧道围岩变形规律影响研究[J]. 公路, 2015, 4: 271-276. TIAN Jun-feng, YE Wan-jun, YANG Geng-she. Impact ofmoisturecontentandfreeze-thawcycleonrock deformation law of loess tunnel in Yangqu region[J]. Highway, 2015, 4: 271-276. (in Chinese).
[14] 公路隧道设计规范:JTGD70—2004[S]. 2004. [15] 谢家烋. 浅埋隧道的地层压力[J]. 土木工程学报, 1964(6): 58-70. XIE Jia-xiu. Earth pressure on shallow burial tunnel[J]. China Civil Engineering Journal, 1964(6): 58-70. (in Chinese)
[16] 王春浩. 超大断面黄土公路隧道围岩压力计算方法分析[J]. 现代隧道技术, 2015, 52(3): 175-181. WANG Chun-hao. Calculation Method for surrounding rock pressure of a loess highway tunnel with an extra-large section[J]. Modern Tunnelling Technology, 2015, 52(3): 175-181. (in Chinese)
[17] 杨建民, 喻渝, 谭忠盛, 等. 大断面深浅埋黄土隧道围岩压力试验研究[J]. 铁道工程学报, 2009, 2: 76-79. YANG Jian-min, YU Yu, TAN Zhong-sheng, et al. Experimental research on the surrounding rock pressure of largesectionalloesstunnelunderdeepandshallow submersion[J]. Journal of Railway Engineering Society, 2009, 2: 76-79. (in Chinese)
[18] 王明年, 郭军, 罗禄森, 等. 高速铁路大断面深埋黄土隧道围岩压力计算方法[J]. 中国铁道科学, 2009, 30(5): 54-58. WANG Ming-nain, GUO Jun, LUO Lu-sen, et al. Calculation method for the surrounding rock pressure of deep buried large sectional loess tunnel of high speed railway[J]. China Railway Science, 2009, 30(5): 54-58. (in Chinese)
[19] 于丽, 吕城, 段儒禹, 等. 浅埋黄土隧道围岩压力计算方法[J]. 中国铁道科学, 2019, 40(4): 69-76. YU Li, LÜ Cheng, DUAN Ru-yu, et al. Calculation method for surrounding rock pressure of shallow buried loess tunnel[J]. China railway science, 2019, 40(4): 69-76. (in Chinese)
-
期刊类型引用(9)
1. 孟凌霄,徐龙伟,王桂梅,姜润豪,孙湲惠,许英东,付涛. 接头形式与位置对装配式箱涵动力性能影响研究. 市政技术. 2024(06): 142-149 . 百度学术
2. 李国维,米帅奇,仇红超,吴建涛,李军,吴桂胜. 深埋盖板涵路基填土应力场分布特征试验研究. 岩石力学与工程学报. 2022(11): 2311-2319 . 百度学术
3. 王伟. 高速公路高填土路基病害及处理措施研究. 交通世界. 2021(Z2): 71-72 . 百度学术
4. 陶庆东,何兆益,贾颖. 结构参数与填料特性对盖板涵洞土涵作用影响. 地下空间与工程学报. 2021(02): 468-478 . 百度学术
5. 米帅奇,陈伟,苏彤,AGO Cadnel. 涵周土性状对高填方盖板涵涵顶应力影响分析. 粉煤灰综合利用. 2021(06): 34-40 . 百度学术
6. 陶庆东,何兆益,贾颖. 涵洞-填土-地基共同作用的涵洞减载效应研究. 三峡大学学报(自然科学版). 2020(05): 67-74 . 百度学术
7. 徐湉源,王明年,于丽. 高填方双层衬砌式明洞土压力和结构内力特性研究. 铁道学报. 2019(02): 146-153 . 百度学术
8. 赵立芳,段金辉. 混凝土盖板涵的施工要点. 黑龙江交通科技. 2019(08): 116-117 . 百度学术
9. 冯忠居,李少杰,郝宇萌,董芸秀,方元伟,胡海波,潘放,李军. 上埋式涵洞基础埋深效应下的地基承载力研究. 长江科学院院报. 2019(11): 83-90 . 百度学术
其他类型引用(11)