• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于图像数字技术的砂岩裂隙可视化渗流特性试验研究

刘杰, 唐洪宇, 杨渝南, 石谦, 李政, 黎照, 高进, 兰俊

刘杰, 唐洪宇, 杨渝南, 石谦, 李政, 黎照, 高进, 兰俊. 基于图像数字技术的砂岩裂隙可视化渗流特性试验研究[J]. 岩土工程学报, 2020, 42(11): 2024-2033. DOI: 10.11779/CJGE202011007
引用本文: 刘杰, 唐洪宇, 杨渝南, 石谦, 李政, 黎照, 高进, 兰俊. 基于图像数字技术的砂岩裂隙可视化渗流特性试验研究[J]. 岩土工程学报, 2020, 42(11): 2024-2033. DOI: 10.11779/CJGE202011007
LIU Jie, TANG Hong-yu, YANG Yu-nan, SHI Qian, LI Zheng, LI Zhao, GAO Jin, LAN Jun. Experimental research on visible seepage of sandstone fissure using digital image-based method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2024-2033. DOI: 10.11779/CJGE202011007
Citation: LIU Jie, TANG Hong-yu, YANG Yu-nan, SHI Qian, LI Zheng, LI Zhao, GAO Jin, LAN Jun. Experimental research on visible seepage of sandstone fissure using digital image-based method[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2024-2033. DOI: 10.11779/CJGE202011007

基于图像数字技术的砂岩裂隙可视化渗流特性试验研究  English Version

基金项目: 

湖北省技术创新重点项目 2017ACA189

国家自然科学基金项目 51579138

湖北省自然科学基金杰出青年人才计划项目 2018CFA065

湖北长江三峡滑坡国家野外科学观测研究站开放基金项目 2018KTL08

湖北省自然科学基金一般面上项目 2020CFB584

详细信息
    作者简介:

    刘杰(1979—),男,教授,博士生导师,主要从事岩土工程和水工结构研究。E-mail:liujieea@126.com

    通讯作者:

    杨渝南, E-mail:yangyunan_11@163.com

  • 中图分类号: TU411

Experimental research on visible seepage of sandstone fissure using digital image-based method

  • 摘要: 自主研发的可视化裂隙渗流试验装置,应用颜色示踪的图像数字化处理技术,在不同渗透压和法向应力分级加卸载耦合作用下,进行空间垂直角度的砂岩裂隙可视化渗流试验。通过毫秒级分帧技术捕捉裂隙渗流状态并对渗流面积色域分区,基于数字化图像技术进行二值化处理,通过图层二次叠加渲染,自识别渗流面积参数,建立渗透压与法向应力作用下的渗流面积扩散规律。研究裂隙渗流优势路径各断面的过流宽度变化特征,提出可视化渗流速度求取公式,指出渗流速度沿流径变化为骤增、骤降、均匀损耗3个阶段,建立最小断面宽度对应的峰值流速与渗透压和法向应力耦合作用下的函数模型。基于实测数据建立主渗流路径中法向应力、渗透压与雷诺数的幂函数关系,标定渗流状态的惯性作用区与黏性作用区的转变临界点,构建可视化裂隙渗流雷诺数预测模型,对裂隙渗流中真实渗流路径识别、流速矢量实时变化、流体状态判定等关键科学问题提出了新的研究理论及方法。
    Abstract: The visual fracture seepage test devices independently developed apply the color tracer image digital processing technology to carry out the visual seepage tests on the sandstone fractures with vertical spatial angle under the coupling effects of loading and unloading with different osmotic pressure and normal stress gradations. By means of the millisecond frame division technology, the seepage state of the crack is captured and the color domain of the seepage area is partitioned. Based on the digital image technology, the binary processing is carried out. The parameters of the seepage area are identified by double overlay of layers, and the diffusion law of the seepage area under the action of osmotic pressure and normal stress is established. The characteristics of the change of the flow width of each section along the dominant seepage path of the fracture are studied, and the formula for calculating the visual seepage velocity is put forward. It is pointed out that the seepage velocity changes along the flow diameter into three stages: sudden increase, sudden decrease and uniform loss. A functional model for the peak velocity corresponding to the minimum section width is established under the coupling action of osmotic pressure and normal stress. Based on the measured data of the main seepage path, the power function for the stress normal, osmotic pressure and Reynolds number is established, the change point of seepage state in the inertia function area and viscous effect area is calibrated, and the prediction model for Reynolds number of visualized fissure flows is formulated. The new theories and research method for the key scientific issues such as identification of real seepage in fissure seepage path, real-time change of velocity vector and determination of fluid state are put forward.
  • 图  1   预制V形状槽劈裂法

    Figure  1.   Prefabricated V-shaped slot splitting method

    图  2   硅胶翻模

    Figure  2.   Silica gel turning mould

    图  3   可视化试样制备

    Figure  3.   Preparation of visualized sample

    图  4   试样组装

    Figure  4.   Assembly of sample

    图  5   裂隙渗流可视化试验装置图

    Figure  5.   Installation diagram of visualized fracture seepage tests

    图  6   裂隙可视化渗流试验流程图

    Figure  6.   Flow chart of visualized tests of fracture

    图  7   分帧、分区、特征点提取图像示例

    Figure  7.   Example of image extraction by frame, partition and feature points

    图  8   渗流面积临界Ⅰ值求取示意图

    Figure  8.   Schematic diagram of critical Ⅰ value of contact area of fracture surface

    图  9   渗流面积Ⅰ值划分

    Figure  9.   Division of seepage area byⅠvalue

    图  10   识别盲区与误区

    Figure  10.   Identification blind and misunderstanding area of seepage area

    图  11   自识别正确

    Figure  11.   Correctness of self identification

    图  12   图层混合选项处理

    Figure  12.   Processing of layer blending options

    图  13   裂隙面图形总面积像素值

    Figure  13.   Pixel values of total area of fracture surface

    图  14   裂隙面图形非渗流面积像素值

    Figure  14.   Pixel values of non-seepage of fracture surface

    图  15   渗流面积与法向应力、渗透压的关系

    Figure  15.   Relationship among seepage area and normal stress and osmotic pressure

    图  16   k与法向应力的关系

    Figure  16.   Relationship betweenk and normal stress

    图  17   图像断面划分与宽度获取

    Figure  17.   Division of image section and width acquisition

    图  18   过流断面宽度变化

    Figure  18.   Variation of cross-section width

    图  19   法向应力0.1 MPa时各断面速度关系

    Figure  19.   Relationship between speed section at normal stress of 0.1 MPa

    图  20   法向应力0.6 MPa时各断面速度关系图

    Figure  20.   Relationship between speed sections at normal stress of 0.6 MPa

    图  21   各分区速度变化率

    Figure  21.   Change rates of various speed partitions

    图  22   渗透压与峰值流速vmax的影响关系

    Figure  22.   Relationship between osmotic pressure and maximum velocity

    图  23   增长率a随法向应力的变化

    Figure  23.   Change of growth rate with normal stress

    图  24   0.1 MPa不同渗透压下渗流路径长度与雷诺数的关系

    Figure  24.   Reynolds number of flow path under different osmotic pressures at normal stress of 0.1 MPa

    图  25   m与渗透压的关系

    Figure  25.   Relationship betweenm and osmotic pressure

    图  26   μ和法向应力的关系

    Figure  26.   Relationship betweenμ and normal stress

    图  27   n与渗透压的关系

    Figure  27.   Relationship betweenn and osmotic pressure

    图  28   κ与法向应力的关系

    Figure  28.   Relationship betweenκ and normal stress

    表  1   渗流面积分类与RGB值对应表

    Table  1   Classification of seepage area and values of RGB

    区域命名渗流面积分类颜色表观RGB数值大小反映颜色的偏向临界归一化
    RGBⅠ值Ⅰ值
    1区域有效渗流面积液体扩散区70~10540~8535~850.320.11~0.32
    2区域临界渗流面积液体微过渡区101~13051~9051~900.32~0.342
    3区域非渗流面积液体未扩散区131~16090~12090~1200.3420.342~0.918
    下载: 导出CSV

    表  2   黑白高亮二值化图

    Table  2   Black and white highlighted binarization diagram

    法向应力/MPa渗透压/MPa
    0.10.20.30.40.50.6
    0.1
    0.6
    下载: 导出CSV

    表  3   裂隙固有渗流参数δ

    Table  3   Values of intrinsic seepage parameter of crack

    法向应力/MPa0.10.20.30.40.50.6
    δ49.7347.1745.9341.9039.1723.43
    下载: 导出CSV

    表  4   主惯性与主黏性临界点

    Table  4   Critical points of main inertia and main viscosity

    临界点坐标渗透压/MPa
    0.10.20.30.40.50.6
    xX8.337.527.657.938.088.52
    yRe0.711.151.181.741.862.27
    下载: 导出CSV

    表  5   雷诺数预测值的平均相对误差

    Table  5   Average relative errors of predicted values of Reynolds number

    法向应力/MPa0.10.20.30.40.50.6
    平均相对误差ε0.26590.14420.18110.18720.20590.1667
    下载: 导出CSV
  • [1]

    LOUIS C. Rock Hydraulics in Rock Mechanics[M]. New York: Springer-Verlag, 1974.

    [2] 速宝玉, 詹美礼, 赵坚. 仿天然岩体裂隙渗流的试验研究[J]. 岩土工程学报, 1995, 17(5): 19-24. doi: 10.3321/j.issn:1000-4548.1995.05.004

    SU Bao-yu, ZHAN Mei-li, ZHAO Jian. Study on fracture seepage in the imitative nature rock[J]. Chinese Journal of Geotechnical Engineering, 1995, 17(5): 19-24. (in Chinese) doi: 10.3321/j.issn:1000-4548.1995.05.004

    [3] 许光祥, 张永兴, 哈秋舲. 粗糙裂隙渗流的超立方和次立方定律及其试验研究[J]. 水利学报, 2003, 34(3): 74-79. doi: 10.3321/j.issn:0559-9350.2003.03.014

    XU Guang-xiang, ZHANG Yong-xing, HA Qiu-ling. Super- cubic and sub-cubic law of rough fracture seepage and its experimental study[J]. Journal of Hydraulic Engineering, 2003, 34(3): 74-79. (in Chinese) doi: 10.3321/j.issn:0559-9350.2003.03.014

    [4]

    SINGH K K, SINGH D N, RANJITH P G. Laboratory simulation of flow through single fractured granite[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 987-1000. doi: 10.1007/s00603-014-0630-9

    [5]

    BABADAGLI T, REN X, DEVELI K. Effects of fractal surface roughness and lithology on single and multiphase flow in a single fracture:an experimental investigation[J]. International Journal of Multiphase Flow, 2015, 68: 40-58. doi: 10.1016/j.ijmultiphaseflow.2014.10.004

    [6]

    BRUSH D J, THOMSON N R. Fluid flow in synthetic roughwalled fractures:Navier-Stokes, Stokes, and local cubic law simulations[J]. Water Resources Research, 2003, 39(4): 1085-1100.

    [7]

    OLSSON R, BARTON N. An improved model for hydro mechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(3): 317-329. doi: 10.1016/S1365-1609(00)00079-4

    [8] 胡昱, 源新, 刘光廷, 等. 多轴应力作用下砂砾岩单裂隙渗流规律试验研究[J]. 地下空间与工程学报, 2007, 3(6): 1009-1013. doi: 10.3969/j.issn.1673-0836.2007.06.006

    HU Yu, YUAN Xin, LIU Guang-ting, et al. Experiment research on the laws of seepage in calcirudite rock within single fracture under multiaxial stresses[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(6): 1009-1013. (in Chinese) doi: 10.3969/j.issn.1673-0836.2007.06.006

    [9] 刘才华, 陈从新. 三轴应力作用下岩石单裂隙的渗流特性[J]. 自然科学进展, 2007, 17(7): 989-994. doi: 10.3321/j.issn:1002-008X.2007.07.022

    LIU Cai-hua, CHEN Cong-xin. Seepage characteristics of single fracture under triaxial stress[J]. Advances in Natural Science, 2007, 17(7): 989-994. (in Chinese) doi: 10.3321/j.issn:1002-008X.2007.07.022

    [10] 王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607013.htm

    WANG Zhi-liang, SHEN Lin-fang, XU Ze-min, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201607013.htm

    [11]

    QIAN J, ZHAN H, LUO S, et al. Experimental evidence of scale-dependent hydraulic conductivity for fully developed turbulent flow in a single fracture[J]. Journal of Hydrology, 2007, 339(3/4): 206-215.

    [12]

    RANJITH P G, DARLINGTON W. Nonlinear single-phase flow in real rock joints[J]. Water Resources Research, 2007, 43(9): 146-156.

    [13]

    ZHANG Z, NEMCIK J. Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures[J]. Journal of Hydrology, 2013, 477(16): 139-151.

    [14] 胡少华, 周佳庆, 陈益峰, 等. 岩石粗糙裂隙非线性渗流特性试验研究[J]. 地下空间与工程学报, 2017, 13(1): 48-56. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm

    HU Shao-hua, ZHOU Jia-qing, CHEN Yi-feng, et al. Laboratory research on nonlinear flow behavior of rough fractures[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 48-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201701008.htm

    [15] 鞠杨, 谢和平, 郑泽民, 等. 基于3D打印技术的岩体复杂结构与应力场的可视化方法[J]. 科学通报, 2014, 59(32): 3109-3119. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201432002.htm

    JU Yang, XIE He-ping, ZHENG Ze-ming, et al. Visualization of the complex structure and stress field inside rock by means of 3D printing technology[J]. Chinese Science Bull, 2014, 59(32): 3109-3119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201432002.htm

    [16] 刘建军, 汪尧, 宋睿, 等. 基于透明岩土材料的可视化渗流实验及其应用前景[J]. 地球科学, 2017, 42(8): 1287-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708004.htm

    LIU Jian-jun, WANG Yao, SONG Rui, et al. Visual seepage experiment based on transparent rock-soil material and its application prospect[J]. Earth Science, 2017, 42(8): 1287-1295. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201708004.htm

    [17] 盛金昌, 刘继山, 赵坚. 基于图像数字化技术的裂隙岩体非稳态渗流分析[J]. 岩石力学与工程学报, 2006, 25(7): 1402-1407. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607015.htm

    SHENG Jin-chang, LIU Ji-shan, ZHAO Jian. Analysis of transient fluid flow in fractured rock masses with digital image-based method[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1402-1407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200607015.htm

    [18]

    FOXRW , MCDONALD A T, PRITCHARD P J. Introduction to Fluid Mechanics[M]. 6th ed. Hoboken: John Wiley and Sons, 2004: 348.

图(28)  /  表(5)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  42
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-08
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2020-10-31

目录

    /

    返回文章
    返回