Advances in researches on buffer/backfilling materials—bentonite pellets and pellet mixtures
-
摘要: 膨润土颗粒是一种用于填充高放废物地质处置库中各种施工接缝和空隙的缓冲/回填材料。从膨润土颗粒的制备方法、填充技术与堆积性质、热传导特性、水力特性、结构演化规律及力学特性等6个方面,全面回顾和总结了近年来对膨润土颗粒的研究成果与最新进展,并分别指出了各方面值得进一步深入研究的几个课题。研究表明,膨润土颗粒可由多种方法制备,也可采用多种技术填充到处置库中,其堆积干密度和均匀性与充填技术、级配、堆积方式等因素有关,其热传导系数与干密度、含水率和温度等因素有关,其水力–力学特性与级配、干密度及温度等因素有关。通水水化或降低吸力过程中,颗粒混合物由初始松散结构逐渐转变为胶结融合结构,及至水化饱和后基本达到宏观上的均一化结构,但微观层次的均一化过程仍将持续漫长的时间。考虑到处置库实际运营工况的复杂性,科学高效的颗粒混合物填充技术、多场(热–水–化–力)耦合条件下的颗粒混合物水力–力学特性及结构演化规律是今后值得深入探索的研究方向。Abstract: The bentonite pellet is considered as an alternative buffer/backfilling material to fill technological voids and empty space in high-level radioactive waste (HLW) repository. The previous studies on the bentonite pellets are carefully reviewed and summarized, including their manufacturing methods, emplacement techniques, thermal conductivity, hydraulic behavior, structural change and mechanical behavior. Correspondingly, the research subjects worth further investigation are put forward. The results in the literatures indicate that the pellets can be manufactured and emplaced using several techniques, which together with size gradation and packing protocol can influence the packing dry density and homogeneity. For the pellet mixtures, the thermal conductivity is mainly governed by dry density, water content and temperature, and the hydro-mechanical behavior is related to size gradation, dry density and temperature. Upon liquid or suction controlled hydration, the initial loose-structured pellet mixtures will gradually transfer to the cemented state and finally present a homogeneous appearance at saturation. However, much longer duration is required before getting a completely homogeneous state. Considering the complexity of the operation conditions in a HLW repository, the improvements on emplacement techniques of the pellets and the investigations on the hydro-mechanical behavior and structural change under the coupled thermo-hydro-chemo-mechanical conditions should be further conducted.
-
Keywords:
- geological disposal /
- buffer/backfilling material /
- bentonite pellet /
- pellet mixture
-
孙建生老师对敝人《稳定安全系数计算公式中荷载与抗力错位影响探讨》[1](以下简称原文)提出了宝贵的指导及讨论意见,非常感谢!
业界普遍认为边坡稳定安全系数目前主要有两种定义方法:①为抗滑力矩与下滑力矩之比(通常可简化为抗力荷载比),相应的稳定安全系数计算方法一般采用单一安全系数法(原文即采用此法),以瑞典条分法为代表;②定义为滑动面上的抗剪强度与实际产生的剪应力之比,相应的稳定安全系数计算方法一般采用强度(抗剪强度)折减法,以毕肖普法(Bishop)及简布法(Janbu)为代表。宋二祥等[2]倾向于第二种定义。孙文中
∑R÷K=∑S ,对所有抗滑力除以了同一安全系数K、即均进行了折减,从公式表达来看与单一安全系数法没什么不同,与强度折减法仅对岩土体的抗剪强度进行折减明显不同。但文献[3]认为“抗滑稳定安全系数K是表达……实际……滑动力
∑S 与理论极限(虚拟概念)抗滑力∑R 的极限平衡接近程度”,之后的论述绕此展开。“实际滑动力”、“理论极限抗滑力”及“极限平衡接近程度”等用语是理解文献[3]观点的关键。第②种定义中的“抗剪强度”及“剪应力”也可表达为“抗力”及“荷载”或“抗滑力”及“滑动力”,从文献[3]角度来看,极限抗滑力是理论的,故是“虚拟概念”;实际滑动力即实际发生的荷载,与抗滑力相等时则土体处于极限平衡状态;在安全系数K计算过程中通过逐步折减而逼近极限平衡状态,表达了实际滑动力与抗滑力的接近程度,故文献[3]更适合从第②种定义及强度折减法的角度去理解。倘若如此,则:
(1)文献[3]认为原文极限平衡力学基本概念混淆、错误、缺失。笔者认为,原文没有明示但实质上依据的是第一种定义,文献[3]讨论的实质上属于第②种定义,两种定义中的概念不同是正常现象。
(2)文献[3]认为“分子与分母加减项的变化必然影响到安全系数计算结果,但这绝不是极限平衡概念的滑动力荷载与极限抗滑力概念错位问题的探讨依据”,笔者同意。“分子与分母加减项的变化必然影响到安全系数计算结果”正是原文目的,原文探讨的就是加减项中的那些不合理项导致的按第一种定义编写的安全系数计算公式有时并不完全符合第一种定义这种现象;“计算结果……不是概念错位问题的探讨依据”,因为定义形式不同,当然不能把根据第一种定义获得的计算结果当作探讨第二种定义概念的依据。
(3)文献[3]认为抗滑力是虚拟受力。笔者认为,抗滑力大于滑动力时可如此认为,小于时(处于极限平衡状态或滑坡时)则不是虚拟的、而是实际发生的。
(4)文献[3]认为“在
K=∑R∑S 公式中,分子抗滑力∑R 包含所有极限虚拟概念状态的抗滑力因素,不论正负......分母滑动力∑S 包含所有实际切向滑动力因素,不论正负”,笔者没有理解。①所有的抗滑力均应是同向、即“正”的,“负抗滑力”指的是什么呢?如果是负的,与抗滑力反向的,就应该是滑动力;但如果是滑动力,就应该如第②种定义及文献[3]前述,是实际发生的,那么就不是“虚拟概念”的,因为“虚拟概念”的是抗滑力;但如果是抗滑力,就应该与其它“正”抗滑力同向、不应为负,故“负抗滑力”到底是什么力,很难理解;②同理,所有的滑动力均应是同向、即“正”的,“负滑动力很难理解;③假定部分滑动力也可以“虚拟概念”、即作为“负抗滑力”计入分子∑R ,部分抗滑动可以实际发生、即作为“负滑动力”计入分母∑S ,那么,哪些滑动力可以计入分子、哪些抗滑力可以计入分母?仍以瑞典条分法为例,当滑弧中心点O位于边坡上方时,如图1所示,土条1~(m-1)的重力产生滑动力
m−1∑i=1Gti ,土条m~n的重力产生抗滑力n∑i=mGti ,两者作用方向相反,围绕着两者关系如何处理产生4种稳定安全系数K计算公式,其中前2种工程应用广泛:K=n∑i=1(Gnitanφi+cili)m−1∑i=1Gti−n∑i=mGti, (1) K=n∑i=1(Gnitanφi+cili)m−1∑i=1Gti+n∑i=mGti, (2) K=n∑i=1(Gnitanφi+cili)−n∑i=mGtim−1∑i=1Gti, (3) K=n∑i=1(Gnitanφi+cili)+n∑i=mGtim−1∑i=1Gti。 (4) 式(1)~(4)从文献[3]角度来看:①式(1)将
n∑i=mGti 放在分母与滑动力m−1∑i=1Gti 相减,可认为是∑S 中的“负滑动力”;②式(2)将之放在分母与滑动力相加,可认为是∑S 中的“正滑动力”;③式(3)将之放在分子与抗滑力n∑i=1(Gnitanφi+cili) 相减,可认为是∑R 中的“负抗滑力”;④式(4)将之放在分子与抗滑力相加,可认为是∑R 中的“正抗滑力”。那么,n∑i=mGti 到底是“负滑动力”、“正滑动力”、“负抗滑力”还是“正抗滑力”?这个问题文献[3]没有指明如何处理,却正是原文所讨论的核心内容,换句话说,在这个问题上原文所讨论的内容与孙文观点是互补的。(4)其余意见详见笔者对文献[2]的回复意见,不再赘述。
总结:①业界对边坡稳定安全系数的主要定义形式有两种,原文依据的是第一种,孙文实质上依据的是第二种,故概念有所不同;②文献[3]提出了“负抗滑力”及“负滑动力”等观点但没有提出实现方法,没有解决原文讨论的安全系数计算公式中抗力与荷载错位(从文献[3]角度可理解为抗滑力与滑动力应用不当)的问题。
笔者对文献[3]理解不准确及本回复意见不妥之处,敬请孙老师及读者们谅解及继续批评指正。
-
表 1 膨润土颗粒的制备方法比较
Table 1 Overview of manufacture techniques for bentonite pellets
方法 原理 颗粒性质 优点 缺点 挤压法 机械压实 形状规则大小统一 工序简单,效率高,机械化程度高 需要特定的制样模具,粒径范围有限 辊压法 压实法 压实–破碎法 机械压实机械破碎 形状各异大小不一 可制备各种粒径的颗粒 工序多,效率低,难以控制机械破碎的初始粒径 湿–干–破碎法 吸力固结机械破碎 表 2 膨润土颗粒的填充方法比较
Table 2 Overview of filling techniques for bentonite pellets
方法 主要优点 主要缺点 适用性 带式输送 效率高 粉尘多
易离析
设备笨重填充较大的空隙或回填巷道 螺旋输送 效率较高
粉尘较少
均匀性较好设备较笨重 填充较大的接缝、空隙或回填巷道 气动喷射 效率较高
堆积密度大粉尘多
均匀性差可填充各种接缝、空隙或回填巷道 人工填充 适应性强 粉尘多
效率低可填充各种接缝、空隙或回填巷道 -
[1] 崔玉军, 陈宝. 高放核废物地质处置中工程屏障研究新进展[J]. 岩石力学与工程学报, 2006, 25(4): 842-847. doi: 10.3321/j.issn:1000-6915.2006.04.019 CUI Yu-jun, CHEN Bao. Recent advances in research on engineered barrier for geological disposal of high-level radioactive nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 842-847. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.019
[2] 陈永贵, 贾灵艳, 叶为民, 等. 施工接缝对缓冲材料水–力特性影响研究进展[J]. 岩土工程学报, 2017, 39(1): 138-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm CHEN Yong-gui, JIA Ling-yan, YE Wei-min, et al. Advances in hydro-mechanical behaviors of buffer materials under effect of technological gaps[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 138-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701014.htm
[3] WANG Q, TANG A M, CUI Y J, et al. The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture[J]. Soils and Foundations, 2013, 53(2): 232-245. doi: 10.1016/j.sandf.2013.02.004
[4] SALO J-P, KUKKOLA T. Bentonite Pellets, an Alternative Buffer Material for Spent Fuel Canister Deposition Holes[R]. Paris: NEA/CEC Workshop “Sealing of Radioactive Waste Repositories” (Braunschweig, Germany), OECD, 1989.
[5] DIXON D, SANDÉN T, JONSSON E, et al. Backfilling of Deposition Tunnels: Use of Bentonite Pellets[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB P-11-44, 2011.
[6] 刘樟荣. 高庙子膨润土颗粒混合物的堆积性质与考虑温度影响的水力特性研究[D]. 上海: 同济大学, 2019. LIU Zhang-rong. Investigation on the Packing Behaviour and Thermal-Hydraulic Properties of GMZ Bentonite Pellet Mixtures[D]. Shanghai: Tongji University, 2019. (in Chinese)
[7] ANDERSSON L, SANDÉN T. Optimization of Backfill Pellet Properties, ÅSKAR DP2, Laboratory Tests[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB R-12-18, 2012.
[8] MARJAVAARA P, HOLT E, SJÖBLOM V. Customized Bentonite Pellets: Manufacturing, Performance and Gap Filling Properties[R]. Eurajoki: Posiva OY, 2013.
[9] IMBERT C, VILLAR M V. Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration[J]. Applied Clay Science, 2006, 32(3/4): 197-209.
[10] HOFFMANN C, ALONSO E E, ROMERO E. Hydro- mechanical behaviour of bentonite pellet mixtures[J]. Physics and Chemistry of the Earth, 2007, 32(8/9/10/11/12/13/14): 832-849.
[11] KIM C S, MAN A, DIXON D, et al. Clay-Based Pellets for Use in Tunnel Backfill and as Gap Fill in a Deep Geological Repository: Characterisation of Thermal-mechanical Properties[R]. Toronto: Nuclear Waste Management Organisation, 2012.
[12] MOLINERO-GUERRA A, MOKNI N, DELAGE P, et al. In-depth characterisation of a mixture composed of powder/pellets MX80 bentonite[J]. Applied Clay Science, 2017, 135: 538-546. doi: 10.1016/j.clay.2016.10.030
[13] CHEN L, LIU Y M, WANG J, et al. Investigation of the thermal-hydro-mechanical (THM) behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2014, 172: 57-68. doi: 10.1016/j.enggeo.2014.01.008
[14] 张虎元, 王学文, 刘平, 等. 缓冲回填材料砌块接缝密封及愈合研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3605-3614. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2019.htm ZHANG Hu-yuan, WANG Xue-wen, LIU Ping, et al. Sealing and healing of compacted bentonite block joints in HLW disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3605-3614. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2019.htm
[15] 陈香波. 颗粒膨润土堆积性质及压实性质研究[D]. 兰州: 兰州大学, 2018. CHEN Xiang-bo. Packing and Static Compaction of Pellet Bentonite for HLW Disposal[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
[16] ZHANG Z, YE W M, LIU Z R, et al. Influences of PSD curve and vibration on the packing dry density of crushed bentonite pellet mixtures[J]. Construction and Building Materials, 2018, 185: 246-255. doi: 10.1016/j.conbuildmat.2018.07.096
[17] LIU Z R, YE W M, ZHANG Z, et al. Particle size ratio and distribution effects on packing behaviour of crushed GMZ bentonite pellets[J]. Powder Technology, 2019, 351: 92-101. doi: 10.1016/j.powtec.2019.03.038
[18] LIU Z R, YE W M, ZHANG Z, et al. A nonlinear particle packing model for multi-sized granular soils[J]. Construction and Building Materials, 2019, 221: 274-282. doi: 10.1016/j.conbuildmat.2019.06.075
[19] LIU Z R, YE W M, CUI Y J, et al. Investigation on vibration-induced segregation behaviour of crushed GMZ bentonite pellet mixtures[J]. Construction and Building Materials, 2020, 241: 117949. doi: 10.1016/j.conbuildmat.2019.117949
[20] 谈云志, 李辉, 彭帆, 等. 膨润土团粒的压实性能研究[J]. 防灾减灾工程学报, 2018, 38(5): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805001.htm TANG Yun-zhi, LI Hui, PENG Fan, et al. Compaction properties of bentonite agglomerate[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(5): 773-780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201805001.htm
[21] FERRARI A, SEIPHOORI A, RÜEDI J, et al. Shot-clay MX-80 bentonite: An assessment of the hydro-mechanical behaviour[J]. Engineering Geology, 2014, 173: 10-18. doi: 10.1016/j.enggeo.2014.01.009
[22] KÖHLER S, MAYOR J C, NUSSBAUM C, et al. Report of the Construction of the HE-E Experiment[R]. PEBS Report, 2012.
[23] KÖHLER S, MAYOR J C, NUSSBAUM C, et al. Report of the construction of the HE-E experiment[R]. PEBS Report, 2012.
[24] GARCÍA-SIÑERIZ J L, VILLAR M V, REY M, et al. Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation[J]. Engineering Geology, 2015, 192: 33-45. doi: 10.1016/j.enggeo.2015.04.002
[25] MASUDA R, ASANO H, TOGURI S, et al. Buffer construction technique using granular bentonite[J]. Journal of nuclear science and technology, 2007, 44(3): 448-455. doi: 10.1080/18811248.2007.9711307
[26] MARJAVAARA P, KIVIKOSKI H. Filling the gap between buffer and rock in the deposition hole[R]. Eurajoki: Posiva OY, 2011.
[27] ÅBERG A. Effects of Water Inflow on the Buffer: An Experimental Study[R]. Stockholm: Svensk Kärnbränslehantering AB, SKB Rapport R-09-29, 2009.
[28] KIVIKOSKI H, HEIMONEN I, HYTTINEN H. Bentonite Pellet Thermal Conductivity Techniques and Measurements[R]. Eurajoki: Posiva OY, 2015.
[29] 马国梁. 膨润土颗粒材料的工程性能研究[D]. 兰州: 兰州大学, 2018. MA Guo-liang. Engineering Properties of Granular Bentonite Materials for HLW Disposal[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
[30] WIECZOREK K, MIEHE R, GARITTE B. Thermal Characterisation of HE-E Buffer[R]. PEBS Report, DELIVERABLE (D-N°: 2.2-9), 2013.
[31] MOLINERO-GUERRA A. Experimental and Numerical Characterizations of the Hydro-Mechanical Behavior of a Heterogeneous Material: Pellet/Powder Bentonite Mixture[D]. Paris: University of Paris-Est, 2018.
[32] MOLINERO-GUERRA A, CUI Y J, HE Y, et al. Characterization of water retention, compressibility and swelling properties of a pellet/powder bentonite mixture[J]. Engineering Geology, 2019, 248: 14-21. doi: 10.1016/j.enggeo.2018.11.005
[33] MOLINERO-GUERRA A, DELAGE P, CUI Y J, et al. Water-retention properties and microstructure changes of a bentonite pellet upon wetting/drying; application to radioactive waste disposal[J]. Géotechnique, 2020, 70(3): 199-209. doi: 10.1680/jgeot.17.P.291
[34] VILLAR M V, MARTÍN P L, ROMERO F J. Long-term THM Tests Reports: THM Cells for the HE-E Test: Update of Results Until February 2014[R]. Madrid: CIEMAT, 2014.
[35] KARNLAND O, NILSSON U, WEBER H, et al. Sealing ability of wyoming bentonite pellets foreseen as buffer material-Laboratory results[J]. Physics and Chemistry of the Earth, 2008, 33: S472-S475. doi: 10.1016/j.pce.2008.10.024
[36] MOLINERO GUERRA A, CUI Y J, MOKNI N, et al. Investigation of the hydro-mechanical behaviour of a pellet/powder MX80 bentonite mixture using an infiltration column[J]. Engineering Geology, 2018, 243: 18-25. doi: 10.1016/j.enggeo.2018.06.006
[37] 苏振妍. 颗粒膨润土材料持水性能及渗透性能研究[D]. 兰州: 兰州大学, 2019. SU Zhen-yan. The Water Retention and Permeability of Granular Bentonite Material for HLW Disposal[D]. Lanzhou: Lanzhou University, 2019. (in Chinese)
[38] DIXON D, LUNDIN C, ÖRTENDAHL E, et al. Deep Repository–Engineered Barrier Systems: Half Scale Tests to Examine Water Uptake by Bentonite Pellets in a Block-Pellet Backfill System[R]. Stockholm: Svensk Kärnbränslehantering AB, 2008.
[39] VAN GEET M, VOLCKAERT G, ROELS S. The use of microfocus X-ray computed tomography in characterising the hydration of a clay pellet/powder mixture[J]. Applied Clay Science, 2005, 29(2): 73-87. doi: 10.1016/j.clay.2004.12.007
[40] MOLINERO-GUERRA A, AIMEDIEU P, BORNERT M, et al. Analysis of the structural changes of a pellet/powder bentonite mixture upon wetting by X-ray computed microtomography[J]. Applied Clay Science, 2018, 165: 164-169. doi: 10.1016/j.clay.2018.07.043
[41] 叶为民, 刘樟荣, 崔玉军, 等. 膨润土膨胀力时程曲线的形态特征及其模拟[J]. 岩土工程学报, 2020, 42(1): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm YE Wei-min, LIU Zhang-rong, CUI Yu-jun, et al. Features and modelling of time-evolution curves of swelling pressure of bentonite[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 29-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202001006.htm
[42] VILLAR M V. EB experiment Laboratory infiltration tests report[R]. Madrid: CIEMAT, 2012.
[43] ZHANG Z, YE W M, LIU Z R, et al. Mechanical behavior of GMZ bentonite pellet mixtures over a wide suction range[J]. Engineering Geology, 2020, 264: 105383. doi: 10.1016/j.enggeo.2019.105383
[44] PUSCH R, BLUEMLING P, JOHNSON L. Performance of strongly compressed MX-80 pellets under repository-like conditions[J]. Applied Clay Science, 2003, 23: 239-244. doi: 10.1016/S0169-1317(03)00108-X
[45] ALONSO E E, ROMERO E, HOFFMANN C. Hydromechanical behaviour of compacted granular expansive mixtures: experimental and constitutive study[J]. Géotechnique, 2011, 61(4): 329-344. doi: 10.1680/geot.2011.61.4.329
[46] ITO H. Compaction properties of granular bentonites[J]. Applied Clay Science, 2006, 31(1/2): 47-55.
[47] GENS A, VALLEJÁN B, SÁNCHEZ M, et al. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling[J]. Géotechnique, 2011, 61(5): 367-386. doi: 10.1680/geot.SIP11.P.015
-
期刊类型引用(2)
1. 王卫星,潘大荣,陈立. 某地铁车站基坑外车道超载安全性分析. 江苏建筑. 2023(04): 112-114+125 . 百度学术
2. 谷浩源,韩流,张健,刘世宝,高志强,吴锋锋. 水-热耦合下露天矿冻结期靠帮开采边坡稳定性研究. 煤矿安全. 2023(12): 159-166 . 百度学术
其他类型引用(0)