• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

地层塌陷作用下埋地管道光纤监测试验研究

王德洋, 朱鸿鹄, 吴海颖, 朱宝, 施斌

王德洋, 朱鸿鹄, 吴海颖, 朱宝, 施斌. 地层塌陷作用下埋地管道光纤监测试验研究[J]. 岩土工程学报, 2020, 42(6): 1125-1131. DOI: 10.11779/CJGE202006017
引用本文: 王德洋, 朱鸿鹄, 吴海颖, 朱宝, 施斌. 地层塌陷作用下埋地管道光纤监测试验研究[J]. 岩土工程学报, 2020, 42(6): 1125-1131. DOI: 10.11779/CJGE202006017
WANG De-yang, ZHU Hong-hu, WU Hai-ying, ZHU Bao, SHI Bin. Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1125-1131. DOI: 10.11779/CJGE202006017
Citation: WANG De-yang, ZHU Hong-hu, WU Hai-ying, ZHU Bao, SHI Bin. Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1125-1131. DOI: 10.11779/CJGE202006017

地层塌陷作用下埋地管道光纤监测试验研究  English Version

基金项目: 

国家重点研发计划课题 2018YFC1505104

国家自然科学基金项目 41722209

国家自然科学基金项目 41672277

苏州市科技计划项目 SYG201612

详细信息
    作者简介:

    王德洋(1991—),男,安徽六安人,硕士,主要从事埋地管道光纤监测的应用研究。E-mail: wangdeyang@smail.nju.edu.cn

    通讯作者:

    朱鸿鹄, E-mail: zhh@nju.edu.cn

  • 中图分类号: TU42

Experimental study on buried pipeline instrumented with fiber optic sensors under ground collapse

  • 摘要: 目前,由于地层塌陷引起的埋地管道突发性事故时有发生,然而国内外关于这方面的研究相对滞后,尚无相关理论预测地面沉陷过程中管道及周边土体的受力变形规律。通过基于光纤布拉格光栅(FBG)的模型试验,研究了地层塌陷时管道的受力特征及土层的沉降分布规律,并推导提出了由光纤应变测值计算管道弯矩的方法。试验结果表明:①随着塌陷体积的增加,埋地管道呈现出顶底逐渐受压和侧边受拉的应变状态;②根据埋设在土体中的FBG应变读数可以将土体变形发展分为应力重分布阶段、土体蠕变压缩阶段和塌陷后的稳定阶段3个阶段;③地面沉降符合修正高斯分布曲线,在此基础上建立了光纤水平向应变与地面沉降变形之间的数学模型,并对比分析了理论计算值与试验值,发现二者具有良好的一致性。该研究为埋地管道安全性评估和灾变预警提供了一种新的思路和方法。
    Abstract: In recent years, the pipeline accidents caused by ground collapse are frequently reported. However, the relevant studies are still lagging behind, and there are few theories to predict the deformation and mechanical characteristics of buried pipelines and surrounding soils in the process of ground settlement and collapse. In this study, the stress state of the pipeline and soil settlements during ground collapse are investigated through fiber Bragg grating (FBG)-based model tests, and the method for calculating the bending moment of the pipeline using fiber-optic strain measurements is derived. The test results show that: (1) The compressive strains accumulate on the pipeline top and bottom with the increase of collapse volume, and both the pipeline sidewalls are in the strain state of tension. (2) According to the FBG strain monitoring results, the development of soil deformation can be divided into three stages, i.e., the stress redistribution stage, the creep compression stage and the stability stage after collapse. (3) The ground settlement pattern fits well with the modified Gaussian distribution. On this basis, the mathematical model between the horizontal strain measured by the fiber optic sensors and the ground settlement is established. At the same time, the results of theoretical calculation and experimental data are compared, and they appear to agree well with each other. This work provides a new approach to effectively evaluate the safety and implement hazard warning of buried pipelines.
  • 图  1   管道模型试验装置示意图

    Figure  1.   Setup of model tests on pipeline

    图  2   Geo-PIV计算得到的土体位移场云图

    Figure  2.   Contours of soil displacements calculated by Geo-PIV

    图  3   H2位置处的FBG传感器应变测值

    Figure  3.   Strains measured by FBG sensors at H2 location

    图  4   H1位置处的FBG传感器应变测值

    Figure  4.   Strains measured by FBG sensors at H1 location

    图  5   管道上FBG的应变测值曲线

    Figure  5.   Strains measured by FBG sensors on pipeline

    图  6   地层塌陷前后埋地管道形状对比图

    Figure  6.   Comparison of buried pipeline shapes before and after ground collapse

    图  7   管道的应力分布示意图

    Figure  7.   Diagram of stress distribution of a buried pipeline

    图  8   不同阶段地表沉降拟合值与实测值的对比结果

    Figure  8.   Comparison of fitted and measured ground surface settlements in different stages

    图  9   地表最大沉降拟合值与实测值的对比结果

    Figure  9.   Comparison of fitted and measured maximum ground surface settlements

    图  10   埋地光纤变形受力示意图

    Figure  10.   Diagram of deformation and stress of buried optical fibers

    图  11   高斯模型沉降模型示意图

    Figure  11.   Schematic diagram of settlement model for Gaussian model

    表  1   修正高斯曲线公式的拟合参数及地表沉降最大值

    Table  1   Fitting parameters of modified Gaussian curve and maximum ground surface settlements

    试验阶段ni/mmα Smax/mm
    实测拟合
    1.3131.10.706.05.6
    2.3160.51.2010.210.1
    2.4172.01.2217.516.2
    下载: 导出CSV

    表  2   由高斯模型计算的参数值

    Table  2   Calculated parameters of Gaussian model

     试验阶段Smax/mmi/mm
    5.5125.6
    9.4526.7
    17.2430.4
    下载: 导出CSV
  • [1] 徐匆匆, 马向英, 何江龙, 等. 城市地下管线安全发展的现状、问题及解决办法[J]. 城市发展研究, 2013, 20(3): 108-118. doi: 10.3969/j.issn.1006-3862.2013.03.022

    XU Cong-cong, MA Xiang-ying, HE Jiang-long, et al. Status, problems and solutions of urban underground pipeline safety and development[J]. Urban Development Studies, 2013, 20(3): 108-118. (in Chinese) doi: 10.3969/j.issn.1006-3862.2013.03.022

    [2] 钱七虎, 陈晓强. 国内外地下综合管线廊道发展的现状、问题及对策[J]. 地下空间与工程学报, 2007, 3(2): 191-194. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200702000.htm

    QIAN Qi-hu, CHEN Xiao-qiang. Situation problems and countermeasures of utility tunnel development in China and abroad[J]. Chinese Journal of Underground space and Engineering, 2007, 3(2): 191-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE200702000.htm

    [3] 张士乔, 李洵, 吴小刚. 地基差异沉降时管道的纵向力学性状分析[J]. 中国农村水利水电, 2003(7): 46-48. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200307020.htm

    ZHANG Shi-qiao, LI Xun, WU Xiao-gang. Analysis of longitudinal mechanical properties for pipeline during foundation uneven settlement[J]. China Rural Water and Hydropower, 2003(7): 46-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD200307020.htm

    [4] 巨玉文, 吴际渊, 贺武斌, 等. 地面塌陷对城市地埋管线影响的试验研究及数值分析[J]. 太原理工大学学报, 2015, 46(1): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201501014.htm

    JU Yu-wen, WU Ji-yuan, HE Wu-bin, et al. Experimental study and numerical analysis on influence of urban underground pipelines under the ground collapse[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 64-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TYGY201501014.htm

    [5] 周敏, 杜延军, 王非, 等. 地层沉陷中埋地HDPE管道力学状态及模型试验分析[J]. 岩土工程学报, 2016, 38(2): 253-262. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602011.htm

    ZHOU Ming, DU Yan-jun, WANG Fei, et al. Physical modeling of mechanical responses of HDPE pipes and subsurface settlement caused by land subsidence[J]. Journal of Geotechnical Engineering, 2016, 38(2): 253-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201602011.htm

    [6]

    WANG F, DU Y J, YANG X M. Physical modeling on ground responses to tunneling in sand considering the existence of HDPE pipes[J]. Geotechnical Testing Journal, 2015, 38(1): 85-97.

    [7] 朱鸿鹄, 施斌, 严珺凡, 等. 基于分布式光纤应变感测的边坡模型试验研究[J]. 岩石力学与工程学报, 2013, 32(4): 821-828. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304023.htm

    ZHU Hong-hu, SHI Bin, YAN Jun-fan, et al. Physical model testing of slope stability based on distributed fiber-optic strain sensing technology[J]. Journal of Rock Mechanics and Engineering, 2013, 32(4): 821-828. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201304023.htm

    [8] 丁勇, 王平, 何宁, 等. 基于BOTDA光纤传感技术的SMW工法桩分布式测量研究[J]. 岩土工程学报, 2011, 33(5): 719-724. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105013.htm

    DING Yong, WANG Ping, HE Ning, et al. New method to measure deformation of SMW piles based on BOTDA[J]. Journal of Geotechnical Engineering, 2011, 33(5): 719-724. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201105013.htm

    [9] 魏广庆, 施斌, 胡盛, 等. FBG在隧道施工监测中的应用及关键问题探讨[J]. 岩土工程学报, 2009, 31(4): 571-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904016.htm

    WEI Guang-qing, SHI Bin, HU Sheng, et al. Several key problems in tunnel construction monitoring with FBG[J]. Journal of Geotechnical Engineering, 2009, 31(4): 571-576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200904016.htm

    [10] 丁勇, 施斌, 崔何亮, 等. 光纤传感网络在边坡稳定监测中的应用研究[J]. 岩土工程学报, 2005, 27(3): 338-342. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300J.htm

    DING Yong, SHI Bin, CUI He-liang, et al. A fiber optic sensing net applied in slope monitoring based on Brillouin scattering[J]. Journal of Geotechnical Engineering, 2005, 27(3): 338-342. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC20050300J.htm

    [11] 吴海颖, 朱鸿鹄, 朱宝, 等. 基于分布式光纤传感的地下管线监测研究综述[J]. 浙江大学学报(工学版), 2019, 53(6): 1057-1070. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906005.htm

    WU Hai-ying, ZHU Hong-hu, ZHU Bao, et al. Review of underground pipeline monitoring research based on distributed fiber optic sensing[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(6): 1057-1070. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201906005.htm

    [12]

    SIMPSON B, HOULTN A, MOORE I D. Distributed sensing of circumferential strain using fiber optics during full-scale buried pipe experiments[J]. Journal of Pipeline Systems Engineering and Practice, 2015(6): 1-10.

    [13]

    CAUCHI S, CHERPILLOD T, MORISON D, et al. Fiber-optic sensors for monitoring pipe bending due to ground movement[J]. Pipeline and Gas Journal, 2007(1): 36-40.

    [14]

    MOHAMAD H, SOGA K, BENNETT P J, et al. Monitoring twin tunnel interaction using distributed optical fiber strain measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(8): 957-967.

    [15]

    KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.

图(11)  /  表(2)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  23
  • PDF下载量:  196
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-24
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-05-31

目录

    /

    返回文章
    返回