Ground loading of shallow tunnels under seismic scenario
-
摘要: 以现行规范中浅埋隧道围岩压力计算的力学模型为基础,引入水平条分原理和水平地震系数,建立一套地震工况下浅埋隧道围岩压力计算方法。与规范方法及杨小礼方法相比,将静力工况与地震工况结合到统一力学模型中,且将岩土体的两个强度参数作为独立因素考虑,且能考虑岩土体分层的实际情形。通过简单算例的对比分析,认为将黏聚力和内摩擦角作为独立因素考虑,能更为准确地计算隧道围岩压力;通过多层算例的对比分析,认为隧道自身所穿越地层的围岩条件,对其围岩压力分布特性起主要作用;进一步利用方法,探讨岩土体强度参数和水平地震系数,对破裂角和竖向围岩压力的影响。研究成果可为浅埋隧道的抗震计算或设计提供更为准确可靠的理论依据或技术参考。Abstract: Based on the calculation diagram specified by the current codes, the horizontal slice principle and the horizontal seismic coefficient are introduced to establish a general method for calculating the ground loading of shallow tunnels under seismic scenario. Compared with the traditional methods, it can unify the static and seismic scenarios into one single calculation diagram, separate two strength parameters apart as independent factors, and consider the multiple-layered ground condition. The case study of simple ground shows that the separation of cohesion and friction angle can describe the ground loading in a more accurate way. The case study of multi-layered ground shows that the ground condition within the range of tunnel itself plays a key role for the distribution of ground loading. Moreover, the influences of two strength parameters and horizontal seismic coefficient on the rupture angle and vertical ground loading are further analyzed through a series of case studies. The proposed method provides a reliable theoretical basis and technical reference for the anti-seismic analysis of shallow tunnels.
-
Keywords:
- shallow tunnel /
- horizontal seismic coefficient /
- slice method /
- rupture angle /
- ground loading
-
-
表 1 各等级围岩参数取值
Table 1 Properties of rock/soil mass
围岩级别 重度γ /(kN·m-3) 计算内摩擦角φc/(°) 黏聚力c/kPa 内摩擦角φ/(°) 折减系数δ Ⅳ 23 50 50 31 0.8 Ⅴ 20 45 30 30 0.6 Ⅵ 16 30 15 17 0.4 表 2 与规范方法的计算结果对比
Table 2 Calculated results compared with code’s method
围岩级别 破裂角β/(°) 竖向压力q'/kPa 规范方法 本文方法 规范方法 本文方法 Ⅳ 76.2 71.8 124.8 74.3 Ⅴ 71.7 66.7 153.3 133.3 Ⅵ 63.8 58.7 142.0 143.8 表 3 与杨小礼方法的计算结果对比
Table 3 Calculated results compared with Yang’s method
围岩级别 破裂角βr/βl/(°) 竖向压力q'/kPa 杨小礼法 本文方法 杨小礼法 本文方法 Ⅳ 74.2/78.0 69.8/73.4 123.3 73.6 Ⅴ 69.0/74.1 64.0/69.1 152.2 132.9 Ⅵ 59.8/67.2 59.8/67.2 141.7 143.0 表 4 多层算例的计算工况
Table 4 Calculation cases for multilayer condition
围岩 工况1(分2层) 工况2(分2层) 工况3(分2层) Ⅵ级 — 10 10 Ⅴ级 10 — 10 Ⅳ级 10 10 — 表 5 多层算例的计算结果
Table 5 Calculated results of multilayer condition
工况 破裂角βr/(°) βl/(°) 竖向压力q'/kPa 工况1 69.9 72.5 90.0 工况2 67.5 71.7 90.2 工况3 61.5 67.5 122.8 -
[1] 李天斌. 汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J]. 工程地质学报, 2008, 16(6): 742-750. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806003.htm LI Tian-bin. Failure characteristics and influence factor analysis of mountain tunnels at epicenter zones of great Wenchuan Earthquake[J]. Journal of Engineering Geology, 2008, 16(6): 742-750. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200806003.htm
[2] 崔光耀, 王明年, 于丽, 等. 汶川地震公路隧道洞口结构震害分析及震害机理研究[J]. 岩土工程学报, 2013, 35(6): 1084-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306015.htm CUI Guang-yao, WANG Ming-nian, YU Li, et al. Seismic damage and mechanism of portal structure of highway tunnels in Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1084-1091. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201306015.htm
[3] 王迎超, 尚岳全, 徐兴华, 等. 隧道出洞口松散围岩塌方时空预测研究[J]. 岩土工程学报, 2010, 32(12): 1868-1874. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012011.htm WANG Ying-chao, SHANG Yue-quan, XU Xing-hua, et al. Time and space prediction of collapse of loose wall rock at tunnel exit[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1868-1874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201012011.htm
[4] 公路隧道设计细则:JTG/T D70—2010[S]. 2010. Guidelines for Design of Highway Tunnel: JTG/T D70—2010[S]. 2010. (in Chinese)
[5] 公路隧道抗震设计细则:JTG/T B02—2019[S]. 2019. Guidelines for Seismic Design of Highway Tunnel: JTG/T B02—2019[S]. 2019. (in Chinese)
[6] LIU X, LI D, WANG J, et al. Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake[J]. Geomechanics and Engineering. 2015, 9(4): 427-445. doi: 10.12989/gae.2015.9.4.427
[7] 杨小礼, 黄波, 王作伟. 水平地震力作用下浅埋偏压隧道松动围岩压力的研究[J]. 中南大学学报(自然科学版). 2010, 41(3): 1090-1095. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003047.htm YANG Xiao-li, HUANG Bo, WANG Zuo-wei. Rock failure pressure of shallow tunnel subjected to horizontal seismic and unsymmetrical loads[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 1090-1095. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201003047.htm
[8] 李鹏飞, 王帆, 聂雄, 等. 深埋非对称连拱隧道围岩压力计算方法研究[J]. 岩土工程学报, 2016, 38(9): 1625-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609011.htm LI Peng-fei, WANG Fan, NIE Xiong, et al. Methods for calculating rock pressure of symmetrical multi-arch deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(9): 1625-1629. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201609011.htm
[9] 张露晨, 李育慧, 李树忱, 等. 动荷载作用下隧道围岩块体稳定性分析及其应用[J]. 岩土力学, 2016, 37(11): 3275-3282. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611029.htm ZHANG Lu-chen, LI Yu-hui, LI Shu-chen, et al. Stability analysis of surrounding rock mass of tunnel under dynamic load and its engineering application[J]. Rock and Soil Mechanics, 2016, 37(11): 3275-3282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611029.htm
[10] 张治国, 姜蕴娟, 刘明, 等. 考虑黏聚力及地震力的浅埋偏压隧道围岩压力[J]. 中国矿业大学学报. 2018, 47(4): 780-790. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804012.htm ZHANG Zhi-guo, JIANG Yun-juan, LIU Ming, et al. Rock pressure of shallow unsymmetrical loading tunnels considering the cohesion and earthquake action[J]. Journal of China University of Minning & Technology, 2018, 47(4): 780-790. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201804012.htm
[11] 张治国, 徐晓洋, 赵其华. 水平地震力作用下浅埋偏压隧道围岩压力的简化理论分析[J]. 岩土力学, 2016, 37(增刊2): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2002.htm ZHANG Zhi-guo, XU Xiao-yang, ZHAO Qi-hua. Simple theoretical analysis of rock pressure for shallow unsymmetrical loading tunnels considering horizontal earthquake action[J]. Rock and Soil Mechanics. 2016, 37(S2): 16-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S2002.htm
[12] 陈祖煜. 土质边坡稳定分析[M]. 北京: 中国水利水电出版社, 2013. CHEN Zu-yu. Soil Slope Stability Analysis[M]. Beijing: China Water & Power Press, 2013. (in Chinese)
[13] 张国祥. 地震条件下挡土墙主动土压力及其分布的新分析法[J]. 岩土力学, 2014, 35(2): 334-338. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402005.htm ZHANG Guo-xiang. New analysis method of seismic active earth pressure and its distribution on a retaining wall[J]. Rock and Soil Mechanics, 2014, 35(2): 334-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201402005.htm
[14] 张国祥, 王敏. 新建筑边坡规范地震主动土压力计算公式的推导及完善[J]. 岩土力学, 2017, 38(4): 1097-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704023.htm ZHANG Guo-xiang, WANG Min. Derivation and improvement of formula for caculating seismic active earth presure in new Technical code for building slope engineering[J]. Rock and Soil Mechanics, 2017, 38(4): 1097-1102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201704023.htm
[15] 林宇亮, 杨果林, 赵炼恒. 地震条件下挡墙后黏性土主动土压力研究[J]. 岩土力学, 2011, 32(8): 2479-2486. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201108039.htm LIN Yu-liang, YANG Guo-lin, ZHAO Lian-heng. Active earth pressure of cohesive soil behind retaining wall under seismic condition[J]. Rock and Soil Mechanics. 2011, 32(8): 2479-2486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201108039.htm
[16] MEHDIPOUR I, GHAZAVI M, MOAYED Z. Stability analysis of geocell reinforced slopes using the limit equilibrium horizontal slice method[J]. International Journal of Geomechanics, 2017, 17(9): 1-15.