• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

上部结构-土-隧道相互作用体系振动台试验模型土的设计与试验研究

谢军, 包淑贤, 胡英飞, 倪雅静, 李延涛

谢军, 包淑贤, 胡英飞, 倪雅静, 李延涛. 上部结构-土-隧道相互作用体系振动台试验模型土的设计与试验研究[J]. 岩土工程学报, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009
引用本文: 谢军, 包淑贤, 胡英飞, 倪雅静, 李延涛. 上部结构-土-隧道相互作用体系振动台试验模型土的设计与试验研究[J]. 岩土工程学报, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009
XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009
Citation: XIE Jun, BAO Shu-xian, HU Ying-fei, NI Ya-jing, LI Yan-tao. Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(3): 476-485. DOI: 10.11779/CJGE202003009

上部结构-土-隧道相互作用体系振动台试验模型土的设计与试验研究  English Version

基金项目: 

河北省科技计划项目 16275406D

河北建筑工程学院研究生创新基金项目 XY202016

详细信息
    作者简介:

    谢军(1979— ),男,副教授,主要从事工程抗震与振动控制等方面的教学和科研工作。E-mail:xiejun79@126.com

    通讯作者:

    李延涛, hblytao@163.com

  • 中图分类号: TU317.1;P315.93

Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system

  • 摘要: 为使上部结构-土-隧道相互作用体系各部分的加速度相似比相匹配,真实还原地震作用下整个体系的动力响应,采用理论分析和试验相结合的方法,设计了一种以锯末、河砂、粉质黏土以及水为成分的模型土。对试配的不同材料配比的模型土进行了大量30 kPa围压下的共振柱试验,并以此为基础设计进行了正交试验,创建Y(r,Sα,Q)函数以判定模型土与原型土G/Gmax-γ动力特性曲线的相似性。正交试验结果表明:模型土的材料锯末、河砂与粉质黏土最优质量比为18%∶27%∶55%,含水率为50%;最优方案模型土基本满足了其与原型土加速度相似比Sa等于3、动剪切模量比G/Gmax随剪应变γ变化的关系曲线相似的预期目标;并获得了各添加材料对模型土相关动力参数的影响规律。另外,进行了50,70 kPa围压下的最优配比模型土的共振柱试验,验证了其基本满足与原型土在不同围压下G/Gmax-γ动力特性曲线的相似性,同时对比二者的阻尼比λ随剪应变γ的变化关系曲线,得出二者关于阻尼比的相似性尚可;并基于卓越周期相似分析再次验证模型土与原型土的相似性。研究结论可为今后有关振动台试验模型土的配制提供一定的参考。
    Abstract: In order to match the similitude ratio of acceleration of a superstructure-soil-tunnel interaction system and truly restore its dynamic response under earthquake action, a kind of model soil composed of sawdust, river sand, silty clay and water is designed by combining the theoretical analysis with experiments. A large number of resonant column tests on the model soils with different material ratios are carried out at confining pressure of 30 kPa, then the orthogonal test scheme is designed and conducted, and Y(r, Sα, Q) function is created to judge the similitude about dynamic shear modulus ratio-shear strain curves between model and prototype soils. The orthogonal test results show that the optimal mass ratio of sawdust, river sand and silty clay is 18%∶27%∶55%, and the moisture content is 50%. The model soil with the optimal proportion basically satisfies the expected target that its similitude ratio of acceleration to the prototype soil is 3 and its correlation curve of dynamic shear modulus ratio-shear strain is similar to that of the prototype soil. The influence laws about dynamic parameters of model soils are obtained for various additive materials. In addition, the resonant column tests on the model soil with the optimal proportion are carried out at confining pressures of 50 and 70 kPa. It is verified that the similitude between the model and prototype soils at different confining pressures is basically satisfied, their correlation curves about damping ratio and shear strain are compared, and it is obtained that their similitude about damping ratio is reasonable. Based on the similarity analysis of the predominant period, the similitude between the model and prototype soils is verified again. The research conclusions may provide some reference for the preparation of model soils in shaking table tests in the future.
  • 图  1   试验仪器及土样

    Figure  1.   Test instrument and soil sample

    图  2   原型土及试配方案G/Gmax-γ曲线

    Figure  2.   Curves of G/Gmax-γ of prototype soil and test schemes

    图  3   原型土及正交方案G/Gmax-γ曲线

    Figure  3.   Curves of G/Gmax-γ of prototype soil and orthogonal schemes

    图  4   各因素含量对曲线相似性影响趋势图

    Figure  4.   Influences of factors on similitude of curves

    图  5   不同围压下模型土与对应深度原型土的G/Gmax-γ曲线

    Figure  5.   Curves of G/Gmax-γ of model soils and corresponding depths of prototype soils at different confining pressures

    图  6   不同围压下模型土与对应深度原型土的λ-γ曲线

    Figure  6.   Curves of λ-γ of model soils and corresponding depths of prototype soils at different confining pressures

    图  7   模型土拟合Gmax-σ3曲线

    Figure  7.   Fitting curve of Gmax-σ3 of model soils

    表  1   天津某场地地勘报告

    Table  1   Geological survey report of a site in Tianjin

    土层类别土层厚度d/m埋深h/m密度ρ/(g·cm-3)剪切波速vse/(m·s-1)最大动剪切模量Gmax/MPa
    杂填土3.13.11.8513232.23
    粉质黏土1.64.71.9014741.06
    粉土2.87.52.0015246.21
    粉质黏土3.110.61.9016853.63
    粉质黏土2.012.61.9019471.51
    粉质黏土2.014.62.0022399.46
    粉质黏土3.418.02.00231106.72
    粉质黏土7.525.52.00240115.20
    粉土2.628.12.00242117.13
    粉质黏土4.032.12.06270150.17
    粉质黏土2.434.52.06285167.32
    粉质黏土4.739.22.06296180.49
    粉质黏土2.842.01.99311192.47
    下载: 导出CSV

    表  2   模型相似关系

    Table  2   Similitude relations of model

    物理量相似关系上部结构隧道
    长度l[L]SL=1/30SL=1/30SL=1/30
    线位移δ[L]Sδ=SL=1/30Sδ=SL=1/30Sδ=SL=1/30
    弹性模量E[FL-2]SE=0.3SE=0.265SE=SG
    等效质量密度ρe[FL-4T2]Sρe=3Sρe=2.65ρm/ρp
    频率ω[T-1]Sω=1/ST=9.523Sω=1/ST=9.5239.523
    时间t[T]ST=SLSρe/SE=0.1050.1050.105
    加速度幅值a[LT-2]Sa=SE/(SLSρe)=33SG/SρSl=3
    下载: 导出CSV

    表  3   正交试验方案及部分结果

    Table  3   Orthogonal test schemes and partial results

    方案锯末A/%河砂B/%含水率C/%密度ρ/(g·cm-3)最大动剪切模量Gmax/MPa加速度相似比Sa
    11821351.429.5163.51
    21827501.498.2832.91
    31833601.566.7992.28
    42321501.339.1653.60
    52327601.467.4022.64
    62333351.208.7513.81
    72821601.256.3182.64
    82827351.066.3503.12
    92833501.096.3193.00
    注:因素A为锯末含量,即锯末占锯末、河砂和粉质黏土总质量的百分比(m锯末/m),因素B为河砂含量,即河砂占锯末、河砂和粉质黏土总质量的百分比(m/m)。
    下载: 导出CSV

    表  4   正交方案Stokoe模型拟合参数及Q值、Y

    Table  4   Fitting parameters of Stokoe model and values of Q and Y for orthogonal tests

    方案参考剪应变γr曲率系数αQ(γr, α)Y(r, Sα, Q)
    P0.001180.94300
    10.001740.9250.0332.71×10-6
    20.001301.0150.0031.80×10-7
    30.001950.9540.0553.18×10-6
    40.003200.6280.1790.0585
    50.001911.0750.0620.0004
    60.002660.8340.1340.0028
    70.003490.7500.2190.0351
    80.003430.7480.2170.0337
    90.001811.2010.0630.0013
    注:P代表粉质黏土。
    下载: 导出CSV

    表  5   各因素对曲线相似性影响极差分析

    Table  5   Range analysis of influences of various factors on similitude of curves

    项目因素
    锯末A河砂BC
    K16×10-60.0930.036
    K20.0610.0340.059
    K30.0700.0040.035
    极差0.0700.0890.024
    主→次BAC
    注:Ki为正交方案任一列上水平号为i时所对试验结果之和。
    下载: 导出CSV

    表  6   模型土的Gmax的方差分析

    Table  6   Variance analysis of Gmax of model soils

    项目因素
    锯末A河砂BC
    组间均方MSA4.2492.5251.559
    组内均方MSe0.8201.5391.715
    F值(F=MSA/Mse)5.1811.6410.908
    单因素显著性显著不显著不显著
    下载: 导出CSV

    表  7   模型土的Gmax的方差分析

    Table  7   Variance analysis of Gmax/ρ of model soils

    项目因素
    锯末A河砂BC
    组间均方MSA0.7220.3502.717
    组内均方MSe1.0011.1250.432
    F值(F=MSA/Mse)0.7210.3116.289
    单因素显著性不显著不显著显著
    下载: 导出CSV

    表  8   模型土与原型土的加速度相似比相关参数

    Table  8   Correlation parameters about similitude ratio of acceleration of model and prototype soils

    类别围压σ/kPa最大动剪切模量Gmax/MPa加速度相似比Sa
    原型土4021152.9
    模型土308.3
    原型土6701502.76
    模型土5010.3
    原型土9401922.54
    模型土7012.0
    下载: 导出CSV

    表  9   模型土与原型土G/Gmax-γ曲线相似性相关参数

    Table  9   Correlation parameters about similitude of G/Gmax-γ of model and prototype soils

    类别围压σ/kPa参考剪应变γr曲率系数αQY
    原型土4020.001060.9450.0038.44×10-7
    模型土300.001301.015
    原型土6700.001270.9610.0041.68×10-7
    模型土500.001341.074
    原型土9400.001360.9350.0071.11×10-7
    模型土700.001391.104
    下载: 导出CSV
  • [1]

    ROBB E S M, VIC C, STEVEN K. Shake Table Testing to Quantify Seismic Soil-structure Interaction of Underground Structure[C]//Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, 2010: 1-5.

    [2]

    KEIZO O, TOSHIO S, TADASHI K, et al. Research on streamlining seismic safety evaluation of underground reinforced concrete duct type structures in nuclear power stations. -Part2. Experimental aspects of laminar shear sand box excitation test with embedded RC models[C]//Transactions, SMIRT 16. Washington D C, 2001.

    [3]

    HAMID R T. Development of synthetic soil mixture for experimental shaking table tests on building frames resting on soft soils[J]. Geomechanics and Geoengineering-An International Journal, 2017, 12(1): 28-35. doi: 10.1080/17486025.2016.1153731

    [4] 魏宝华, 邓亚虹, 慕焕东, 等. 动力模型试验模型土配制初探[J]. 工程地质学报, 2015, 23(5): 937-942. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201505019.htm

    WEI Bao-hua, DENG Ya-hong, MU Huan-dong, et al. Study on preparation of model soil in dynamic model test[J]. Journal of Engineering Geology, 2015, 23(5): 937-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201505019.htm

    [5] 窦远明, 王建宁, 朱旭曦, 等. 软弱土质类相似材料的配比试验结果分析[J]. 水利水电技术, 2017, 48(5): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201705021.htm

    DOU Yuan-ming, WANG Jian-ning, ZHU Xu-xi, et al. Analysis of results of the mixture ratio test of soft soil similar material[J]. Water Resources and Hydropower Engineering, 2017, 48(5): 128-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201705021.htm

    [6] 尚守平, 刘方成, 卢华喜, 等. 振动台试验模型地基土的设计与试验研究[J]. 地震工程与工程振动, 2006, 26(4): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200604033.htm

    SHANG Shou-ping, LIU Fang-cheng, LU Hua-xi, et al. Design and experimental study of a model soil used for shaking table test[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(4): 199-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200604033.htm

    [7] 燕晓, 袁聚云, 袁勇, 等. 大型振动台试验模型场地土的配制方法[J]. 结构工程师, 2015, 31(5): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201505020.htm

    YAN Xiao, YUAN Jun-yun, YUAN Yong, et al. Study on model soil of large-scale shaking table test[J]. Structural Engineers, 2015, 31(5): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201505020.htm

    [8] 陈红娟, 闫维明, 陈适才, 等. 小比例尺地下结构振动台试验模型土的设计与试验研究[J]. 地震工程与工程振动, 2015, 35(3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503007.htm

    CHEN Hong-juan, YAN Wei-ming, CHEN Shi-cai, et al. Design and experimental research on model soil used for shaking table test of a small scale underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503007.htm

    [9] 王志佳. 岩土工程振动台试验理论及在地下管线动力响应研究中的应用[D]. 成都: 西南交通大学, 2016.

    WANG Zhi-jia. Theory of geotechnical shaking table test and its application in study of dynamic response of buried pipeline[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)

    [10] 王志佳, 张建经, 闫孔明, 等. 考虑动本构关系相似的模型土设计及相似判定体系研究[J]. 岩土力学, 2015, 36(5): 1328-1332, 1338. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505013.htm

    WANG Zhi-jia, ZHANG Jian-jing, YAN Kong-ming, et al. Model soil design considering similitude of dynamic constitutive model and evaluati-on of similarity level[J]. Rock and Soil Mechanics, 2015, 36(5): 1328-1332, 1338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505013.htm

    [11] 董亮, 夏峰. 天津地区土动力学参数变异性对地表地震动参数的影响[J]. 地震工程学报, 2017, 39(6): 1062-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201706011.htm

    DONG Liang, XIA Feng. Effect of variability in soil dynamic parameters on the ground motion parameters of a site surface in the Tianjin Area[J]. China Earthquake Engineering Journal, 2017, 39(6): 1062-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201706011.htm

    [12] 土工试验方法标准[M]. 北京: 中国计划出版社, 1999.

    Standard for Geotechnical Testing Method[M]. Beijing: China Planning Press, 1999. (in Chinese)

    [13] 徐炳伟. 大型复杂结构-桩-土振动台模型试验研究[D]. 天津: 天津大学, 2010.

    XU Bing-wei. Shaking Table Test Studying Large-scale Soil-pile-complex Structure Interaction[D]. Tianjin: Tianjin University, 2010. (in Chinese)

    [14] 吴薪柳. 桩-土-复杂结构振动台试验与数值模拟及桩-土相关参数研究[D]. 天津: 天津大学, 2013.

    WU Xin-liu. Pile-soil-complex Structure Shaking Table Test and Numerical Simulation and Study on Related Parameter of Pile-Soil[D]. Tianjin: Tianjin University, 2013. (in Chinese)

    [15] 张克绪, 谢君斐. 土动力学[M]. 北京: 地震出版社, 1989.

    ZHANG Ke-xu, XIE Jun-fei. Soil Dynamics[M]. Beijing: Seismological Press, 1989. (in Chinese)

  • 期刊类型引用(0)

    其他类型引用(1)

图(7)  /  表(9)
计量
  • 文章访问数:  308
  • HTML全文浏览量:  30
  • PDF下载量:  176
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-05-04
  • 网络出版日期:  2022-12-07
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回