Design and experimental research on model soils used for shaking table tests of superstructure-soil-tunnel interaction system
-
摘要: 为使上部结构-土-隧道相互作用体系各部分的加速度相似比相匹配,真实还原地震作用下整个体系的动力响应,采用理论分析和试验相结合的方法,设计了一种以锯末、河砂、粉质黏土以及水为成分的模型土。对试配的不同材料配比的模型土进行了大量30 kPa围压下的共振柱试验,并以此为基础设计进行了正交试验,创建Y(Sγr,Sα,Q)函数以判定模型土与原型土G/Gmax-
γ 动力特性曲线的相似性。正交试验结果表明:模型土的材料锯末、河砂与粉质黏土最优质量比为18%∶27%∶55%,含水率为50%;最优方案模型土基本满足了其与原型土加速度相似比Sa等于3、动剪切模量比G/Gmax随剪应变γ 变化的关系曲线相似的预期目标;并获得了各添加材料对模型土相关动力参数的影响规律。另外,进行了50,70 kPa围压下的最优配比模型土的共振柱试验,验证了其基本满足与原型土在不同围压下G/Gmax-γ 动力特性曲线的相似性,同时对比二者的阻尼比λ 随剪应变γ 的变化关系曲线,得出二者关于阻尼比的相似性尚可;并基于卓越周期相似分析再次验证模型土与原型土的相似性。研究结论可为今后有关振动台试验模型土的配制提供一定的参考。Abstract: In order to match the similitude ratio of acceleration of a superstructure-soil-tunnel interaction system and truly restore its dynamic response under earthquake action, a kind of model soil composed of sawdust, river sand, silty clay and water is designed by combining the theoretical analysis with experiments. A large number of resonant column tests on the model soils with different material ratios are carried out at confining pressure of 30 kPa, then the orthogonal test scheme is designed and conducted, and Y(Sγr, Sα, Q) function is created to judge the similitude about dynamic shear modulus ratio-shear strain curves between model and prototype soils. The orthogonal test results show that the optimal mass ratio of sawdust, river sand and silty clay is 18%∶27%∶55%, and the moisture content is 50%. The model soil with the optimal proportion basically satisfies the expected target that its similitude ratio of acceleration to the prototype soil is 3 and its correlation curve of dynamic shear modulus ratio-shear strain is similar to that of the prototype soil. The influence laws about dynamic parameters of model soils are obtained for various additive materials. In addition, the resonant column tests on the model soil with the optimal proportion are carried out at confining pressures of 50 and 70 kPa. It is verified that the similitude between the model and prototype soils at different confining pressures is basically satisfied, their correlation curves about damping ratio and shear strain are compared, and it is obtained that their similitude about damping ratio is reasonable. Based on the similarity analysis of the predominant period, the similitude between the model and prototype soils is verified again. The research conclusions may provide some reference for the preparation of model soils in shaking table tests in the future.-
Keywords:
- shaking table test /
- model soil /
- resonant column test /
- orthogonal test
-
-
表 1 天津某场地地勘报告
Table 1 Geological survey report of a site in Tianjin
土层类别 土层厚度d/m 埋深h/m 密度ρ/(g·cm-3) 剪切波速vse/(m·s-1) 最大动剪切模量Gmax/MPa 杂填土 3.1 3.1 1.85 132 32.23 粉质黏土 1.6 4.7 1.90 147 41.06 粉土 2.8 7.5 2.00 152 46.21 粉质黏土 3.1 10.6 1.90 168 53.63 粉质黏土 2.0 12.6 1.90 194 71.51 粉质黏土 2.0 14.6 2.00 223 99.46 粉质黏土 3.4 18.0 2.00 231 106.72 粉质黏土 7.5 25.5 2.00 240 115.20 粉土 2.6 28.1 2.00 242 117.13 粉质黏土 4.0 32.1 2.06 270 150.17 粉质黏土 2.4 34.5 2.06 285 167.32 粉质黏土 4.7 39.2 2.06 296 180.49 粉质黏土 2.8 42.0 1.99 311 192.47 表 2 模型相似关系
Table 2 Similitude relations of model
物理量 相似关系 上部结构 隧道 土 长度l [L] SL=1/30 SL=1/30 SL=1/30 线位移δ [L] Sδ=SL=1/30 Sδ=SL=1/30 Sδ=SL=1/30 弹性模量E [FL-2] SE=0.3 SE=0.265 SE=SG 等效质量密度ρe [FL-4T2] Sρe=3 Sρe=2.65 ρm/ρp 频率ω [T-1] Sω=1/ST=9.523 Sω=1/ST=9.523 9.523 时间t [T] ST=SL√Sρe/SE=0.105 0.105 0.105 加速度幅值a [LT-2] Sa=SE/(SLSρe)=3 3 SG/SρSl=3 表 3 正交试验方案及部分结果
Table 3 Orthogonal test schemes and partial results
方案 锯末A/% 河砂B/% 含水率C/% 密度ρ/(g·cm-3) 最大动剪切模量Gmax/MPa 加速度相似比Sa 1 18 21 35 1.42 9.516 3.51 2 18 27 50 1.49 8.283 2.91 3 18 33 60 1.56 6.799 2.28 4 23 21 50 1.33 9.165 3.60 5 23 27 60 1.46 7.402 2.64 6 23 33 35 1.20 8.751 3.81 7 28 21 60 1.25 6.318 2.64 8 28 27 35 1.06 6.350 3.12 9 28 33 50 1.09 6.319 3.00 注: 因素A为锯末含量,即锯末占锯末、河砂和粉质黏土总质量的百分比(m锯末/m总),因素B为河砂含量,即河砂占锯末、河砂和粉质黏土总质量的百分比(m砂/m总)。表 4 正交方案Stokoe模型拟合参数及Q值、Y值
Table 4 Fitting parameters of Stokoe model and values of Q and Y for orthogonal tests
方案 参考剪应变 γr 曲率系数 α Q(γr, α) Y(Sγr, Sα, Q) P 0.00118 0.943 0 0 1 0.00174 0.925 0.033 2.71×10-6 2 0.00130 1.015 0.003 1.80×10-7 3 0.00195 0.954 0.055 3.18×10-6 4 0.00320 0.628 0.179 0.0585 5 0.00191 1.075 0.062 0.0004 6 0.00266 0.834 0.134 0.0028 7 0.00349 0.750 0.219 0.0351 8 0.00343 0.748 0.217 0.0337 9 0.00181 1.201 0.063 0.0013 注: P代表粉质黏土。表 5 各因素对曲线相似性影响极差分析
Table 5 Range analysis of influences of various factors on similitude of curves
项目 因素 锯末A 河砂B 水C K1 6×10-6 0.093 0.036 K2 0.061 0.034 0.059 K3 0.070 0.004 0.035 极差 0.070 0.089 0.024 主→次 B→A→C 注: Ki为正交方案任一列上水平号为i时所对试验结果之和。表 6 模型土的Gmax的方差分析
Table 6 Variance analysis of Gmax of model soils
项目 因素 锯末A 河砂B 水C 组间均方MSA 4.249 2.525 1.559 组内均方MSe 0.820 1.539 1.715 F值(F=MSA/Mse) 5.181 1.641 0.908 单因素显著性 显著 不显著 不显著 表 7 模型土的Gmax/ρ的方差分析
Table 7 Variance analysis of Gmax/ρ of model soils
项目 因素 锯末A 河砂B 水C 组间均方MSA 0.722 0.350 2.717 组内均方MSe 1.001 1.125 0.432 F值(F=MSA/Mse) 0.721 0.311 6.289 单因素显著性 不显著 不显著 显著 表 8 模型土与原型土的加速度相似比相关参数
Table 8 Correlation parameters about similitude ratio of acceleration of model and prototype soils
类别 围压σ/kPa 最大动剪切模量Gmax/MPa 加速度相似比Sa 原型土 402 115 2.9 模型土 30 8.3 原型土 670 150 2.76 模型土 50 10.3 原型土 940 192 2.54 模型土 70 12.0 表 9 模型土与原型土G/Gmax-
γ 曲线相似性相关参数Table 9 Correlation parameters about similitude of G/Gmax-
γ of model and prototype soils类别 围压σ/kPa 参考剪应变γr 曲率系数α Q Y 原型土 402 0.00106 0.945 0.003 8.44×10-7 模型土 30 0.00130 1.015 原型土 670 0.00127 0.961 0.004 1.68×10-7 模型土 50 0.00134 1.074 原型土 940 0.00136 0.935 0.007 1.11×10-7 模型土 70 0.00139 1.104 -
[1] ROBB E S M, VIC C, STEVEN K. Shake Table Testing to Quantify Seismic Soil-structure Interaction of Underground Structure[C]//Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, 2010: 1-5.
[2] KEIZO O, TOSHIO S, TADASHI K, et al. Research on streamlining seismic safety evaluation of underground reinforced concrete duct type structures in nuclear power stations. -Part2. Experimental aspects of laminar shear sand box excitation test with embedded RC models[C]//Transactions, SMIRT 16. Washington D C, 2001.
[3] HAMID R T. Development of synthetic soil mixture for experimental shaking table tests on building frames resting on soft soils[J]. Geomechanics and Geoengineering-An International Journal, 2017, 12(1): 28-35. doi: 10.1080/17486025.2016.1153731
[4] 魏宝华, 邓亚虹, 慕焕东, 等. 动力模型试验模型土配制初探[J]. 工程地质学报, 2015, 23(5): 937-942. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201505019.htm WEI Bao-hua, DENG Ya-hong, MU Huan-dong, et al. Study on preparation of model soil in dynamic model test[J]. Journal of Engineering Geology, 2015, 23(5): 937-942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201505019.htm
[5] 窦远明, 王建宁, 朱旭曦, 等. 软弱土质类相似材料的配比试验结果分析[J]. 水利水电技术, 2017, 48(5): 128-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201705021.htm DOU Yuan-ming, WANG Jian-ning, ZHU Xu-xi, et al. Analysis of results of the mixture ratio test of soft soil similar material[J]. Water Resources and Hydropower Engineering, 2017, 48(5): 128-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ201705021.htm
[6] 尚守平, 刘方成, 卢华喜, 等. 振动台试验模型地基土的设计与试验研究[J]. 地震工程与工程振动, 2006, 26(4): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200604033.htm SHANG Shou-ping, LIU Fang-cheng, LU Hua-xi, et al. Design and experimental study of a model soil used for shaking table test[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(4): 199-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC200604033.htm
[7] 燕晓, 袁聚云, 袁勇, 等. 大型振动台试验模型场地土的配制方法[J]. 结构工程师, 2015, 31(5): 116-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201505020.htm YAN Xiao, YUAN Jun-yun, YUAN Yong, et al. Study on model soil of large-scale shaking table test[J]. Structural Engineers, 2015, 31(5): 116-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201505020.htm
[8] 陈红娟, 闫维明, 陈适才, 等. 小比例尺地下结构振动台试验模型土的设计与试验研究[J]. 地震工程与工程振动, 2015, 35(3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503007.htm CHEN Hong-juan, YAN Wei-ming, CHEN Shi-cai, et al. Design and experimental research on model soil used for shaking table test of a small scale underground structure[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 59-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201503007.htm
[9] 王志佳. 岩土工程振动台试验理论及在地下管线动力响应研究中的应用[D]. 成都: 西南交通大学, 2016. WANG Zhi-jia. Theory of geotechnical shaking table test and its application in study of dynamic response of buried pipeline[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
[10] 王志佳, 张建经, 闫孔明, 等. 考虑动本构关系相似的模型土设计及相似判定体系研究[J]. 岩土力学, 2015, 36(5): 1328-1332, 1338. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505013.htm WANG Zhi-jia, ZHANG Jian-jing, YAN Kong-ming, et al. Model soil design considering similitude of dynamic constitutive model and evaluati-on of similarity level[J]. Rock and Soil Mechanics, 2015, 36(5): 1328-1332, 1338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201505013.htm
[11] 董亮, 夏峰. 天津地区土动力学参数变异性对地表地震动参数的影响[J]. 地震工程学报, 2017, 39(6): 1062-1069. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201706011.htm DONG Liang, XIA Feng. Effect of variability in soil dynamic parameters on the ground motion parameters of a site surface in the Tianjin Area[J]. China Earthquake Engineering Journal, 2017, 39(6): 1062-1069. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201706011.htm
[12] 土工试验方法标准[M]. 北京: 中国计划出版社, 1999. Standard for Geotechnical Testing Method[M]. Beijing: China Planning Press, 1999. (in Chinese)
[13] 徐炳伟. 大型复杂结构-桩-土振动台模型试验研究[D]. 天津: 天津大学, 2010. XU Bing-wei. Shaking Table Test Studying Large-scale Soil-pile-complex Structure Interaction[D]. Tianjin: Tianjin University, 2010. (in Chinese)
[14] 吴薪柳. 桩-土-复杂结构振动台试验与数值模拟及桩-土相关参数研究[D]. 天津: 天津大学, 2013. WU Xin-liu. Pile-soil-complex Structure Shaking Table Test and Numerical Simulation and Study on Related Parameter of Pile-Soil[D]. Tianjin: Tianjin University, 2013. (in Chinese)
[15] 张克绪, 谢君斐. 土动力学[M]. 北京: 地震出版社, 1989. ZHANG Ke-xu, XIE Jun-fei. Soil Dynamics[M]. Beijing: Seismological Press, 1989. (in Chinese)
-
期刊类型引用(0)
其他类型引用(1)