• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究

翟五洲, 翟一欣, 张东明, 吴惠明, 黄宏伟

翟五洲, 翟一欣, 张东明, 吴惠明, 黄宏伟. 盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究[J]. 岩土工程学报, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059
引用本文: 翟五洲, 翟一欣, 张东明, 吴惠明, 黄宏伟. 盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究[J]. 岩土工程学报, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059
ZHAI Wu-zhou, ZHAI Yi-xin, ZHANG Dong-ming, WU Hui-ming, HUANG Hong-wei. Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059
Citation: ZHAI Wu-zhou, ZHAI Yi-xin, ZHANG Dong-ming, WU Hui-ming, HUANG Hong-wei. Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 235-239. DOI: 10.11779/CJGE2019S2059

盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究  English Version

基金项目: 上海市科学技术委员会科研计划项目(17DZ1204205)
详细信息
    作者简介:

    翟五洲(1993— ),男,博士研究生,主要从事盾构隧道加固及鲁棒性设计方面的研究。E-mail: zhaiwuzhou@tongji.edu.cn。

Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings

  • 摘要: 盾构隧道环缝相邻管片之间的错台变形,加剧了运营隧道结构所面临的风险。采用外置钢板对已经发生错台变形的环缝处相邻管片进行加固是一种可取的错台变形控制措施。采用有限元数值模拟的方法,建立了盾构隧道管片环缝钢板加固的三维数值分析模型,在此基础上设计并开展了钢板加固管片环缝数值模拟试验。根据数值模拟试验结果,首先分析了外荷载作用下管片接缝错台变形的发展规律,通过螺栓与管片内的应力分布及发展模式解释现象发生的原因;然后,通过对比未加固与钢板加固接缝管片错台变形随荷载增大的发展情况,对该加固方法对错台变形的控制效果进行量化讨论;最后,分析了当接缝发生错台变形时钢板与管片间连接界面的应力分布规律,揭示了加固钢板与管片之间的传力机制,据此对实际盾构隧道加固工程提出指导性建议。
    Abstract: The safety of operated shield-driven tunnels is threatened by the risk comes from the existing displacement between the adjacent segmental linings at the position of circumferential joints. The additional steel plate strengthening has shown as a probably effective way to improve the performance of the joints of displaced segments. The finite element method (FEM) is adopted to simulate the segment joints strengthened by steel plate. A 3-dimensional FE model containing two segments connected by a curved bolt is first established. Then a numerical test is designed and conducted to demonstrate the effectiveness of the proposed steel plate strengthening method. Based on the simulated results, the relationship between joint displacement and external load is illustrated, and the tendency of which is explained by the stress analysis of the contacted elements within bolts and segments. Next, by comparing the displacement increase between joints with and without steel plate reinforcement, the strengthening efficiency of steel plate on the displaced segment joint is discussed. Finally, the interaction mechanism is investigated by analyzing the stress distribution at the interface between the steel plate and the linings. After all, some suggestions are offered for the real world engineering practice.
  • [1] 王如路. 上海软土地铁隧道变形影响因素及变形特征分析[J]. 隧道与轨道交通, 2009(1): 1-6.
    (WANG Ru-lu.Factors influencing deformation of Shanghai soft soil metro tunnel and deformation analysis[J]. Underground Engineering and Tunnels, 2009(1): 1-6. (in Chinese))
    [2] 王如路, 张冬梅. 超载作用下软土盾构隧道横向变形机理及控制指标研究[J]. 岩土工程学报, 2013, 35(6): 1092-1101.
    (WANG Ru-lu, ZHANG Dong-mei.Mechanism of transverse deformation and assessment index for shield tunnels in soft clay under surface surcharge[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1092-1101. (in Chinese))
    [3] 张冬梅, 邹伟彪, 闫静雅. 软土盾构隧道横向大变形侧向注浆控制机理研究[J]. 岩土工程学报, 2014, 36(12): 2203-2212.
    (ZHANG Dong-mei, ZOU Wei-biao, YAN Jing-ya.Effective control of large transverse deformation of shield tunnels using grouting in soft deposits[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2203-2212. (in Chinese) )
    [4] 刘梓圣, 张冬梅. 软土盾构隧道芳纶布加固机理和效果研究[J]. 现代隧道技术, 2014, 51(5): 155-160.
    (LIU Zi-sheng, ZHANG Dong-mei.The mechanism and effects of afrp reinforcement for a shield tunnel in soft soil[J]. Modern Tunnelling Technology, 2014, 51(5): 155-160. (in Chinese))
    [5] 柳献, 张晨光, 张宸, 等. FRP加固盾构隧道纵缝接头试验研究[J]. 铁道科学与工程学报, 2016, 13(2): 316-324.
    (LIU Xian, ZHANG Chen-guang, ZHANG Chen, et al.Experimental study on the longitudinal joint in shield tunnel reinforced with FRP material[J]. Journal of Railway Science and Engineering, 2016, 13(2): 316-324. (in Chinese))
    [6] 柳献, 唐敏, 鲁亮, 等. 内张钢圈加固盾构隧道结构承载能力的试验研究——整环加固法[J]. 岩石力学与工程学报, 2013, 32(11): 2300-2306.
    (LIU Xian, TANG Min, LU Liang, et al.Experimental study of ultimate bearing capacity of shield tunnel reinforced by full-ring steel plate[J]. Chinese Journal of Geotechnical Engineering, 2013, 32(11): 2300-2306. (in Chinese))
    [7] ZHANG Dong-ming, ZHAI Wu-zhou, et al.Robust retrofitting design for rehabilitation of segmental tunnel linings: Using the example of steel plates[J]. Tunnelling and Underground Space Technology, 2019, 83: 231-242.
    [8] Simplified nonlinear simulation of shield tunnel lining reinforced by epoxy bonded steel plates[J]. Tunnelling and Underground Space Technology, 2016, 51: 362-371.
    [9] 石太伟. 某地铁盾构隧道破损机理分析及加固设计[J]. 铁道标准设计, 2014(6): 116-119.
    (SHI Tai-wei.Damage mechanism analysis and strengthening design for a metro shield tunnel[J]. Railway Standard Design, 2014, 58(6): 116-128. (in Chinese))
    [10] 邵华, 黄宏伟, 张东明, 等. 突发堆载引起软土地铁盾构隧道大变形整治研究[J]. 岩土工程学报, 2016, 38(6): 1036-1043.
    (SHAO Hua, HUANG Hong-wei, ZHANG Dong-ming, et al.Case study on repair work for excessively deformed shield tunnel under accidental surface surcharge in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2016; 38(6): 1036-1043. (in Chinese))
    [11] KIRIYAMA K, KAKIZAKI M, et al.Structure and construction examples of tunnel reinforcement method using thin steel panels[R]. Nippon Steel Technical Report, 2005, 92: 45-50.
    [12] CHANG C T, WANG M J, et al.Repair of displaced shield tunnel of the Taipei rapid transit system[J]. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research, 2001, 16(3): 167-173.
    [13] JONES R, SWAMY R N, et al.Plate separation and anchorage of reinforced concrete beams strengthened by epoxy-bonded steel plates[J]. Structural Engineer, 1988, 66(5).
  • 期刊类型引用(25)

    1. 林洪泽. 带纵向连接件的矩形顶管接头抗剪性能数值模拟探究. 建材发展导向. 2025(01): 49-51 . 百度学术
    2. 周顺华,张克平,张小会,张权,裴政川,赵旭伟. 内钢圈加固盾构隧道黏结界面力学性能. 同济大学学报(自然科学版). 2025(02): 177-186 . 百度学术
    3. 张玄,肖颖,梁寿,王禹玺,王睿,胡黎明. 地热源作用下盾构地铁隧道管片应力响应规律. 公路. 2025(02): 443-449 . 百度学术
    4. 许有俊,林洪泽,张朝. 直螺栓连接的矩形顶管接头抗剪性能数值模拟研究. 内蒙古科技大学学报. 2025(01): 55-62 . 百度学术
    5. 李鑫,魏纲,徐天宝,林双燕. 卸载下超高性能混凝土加固盾构隧道数值模拟. 低温建筑技术. 2024(02): 139-143+148 . 百度学术
    6. 许有俊,康佳旺,张朝,庞跃魁,黄正东,张旭. 矩形顶管隧道F型承插接头剪切刚度分析. 中国铁道科学. 2024(02): 113-122 . 百度学术
    7. 江学辉,颜建伟,罗文俊,李佳宝,徐长节. 纵向压力和加固钢板对隧道力学性能影响的解析解. 岩土力学. 2024(06): 1623-1632 . 百度学术
    8. 尹富秋. 近邻大直径隧道深基坑开挖微变形控制. 中国市政工程. 2024(03): 85-89+157-158 . 百度学术
    9. 许有俊,黄正东,张朝,李鹏飞,康佳旺,张旭,单余含. 地铁车站矩形顶管壳-接头理论模型及纵向变形. 中国铁道科学. 2024(04): 99-110 . 百度学术
    10. 赵密,张凤琳,黄景琦,赵旭,曹胜涛,杜修力,谢伟杰. 正弯矩循环加载下粘钢加固管片接头动力特性数值模拟研究. 北京工业大学学报. 2024(11): 1326-1338 . 百度学术
    11. 彭武. 基于钢板加固的盾构隧道管片衬砌承载性能数值模拟研究. 交通节能与环保. 2024(06): 254-261 . 百度学术
    12. 刘德军,张杨,左建平,戴庆庆. 基于N-M曲线的盾构隧道正截面承载性能加固评价及演化规律. 中国矿业大学学报. 2023(01): 76-85 . 百度学术
    13. 魏纲,徐天宝,张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析. 隧道与地下工程灾害防治. 2023(02): 24-32 . 百度学术
    14. 杨成. 运营盾构隧道加固后衬砌-钢环复合体系力学性能研究. 广东土木与建筑. 2023(08): 89-92 . 百度学术
    15. 王儒,翟五洲,倪海波,黄宏伟. 盾构隧道机械法联络通道破洞施工中管片衬砌洞门结构力学响应的数值模拟研究. 隧道建设(中英文). 2023(S1): 178-188 . 百度学术
    16. 孟庆坤,徐国元. 土体加固范围对既有盾构隧道轨道的影响分析. 河南理工大学学报(自然科学版). 2022(01): 174-180 . 百度学术
    17. 孙雅珍,于阳,王金昌,叶友林,谭清元. 考虑界面效应的内张钢圈加固盾构管片结构力学性能研究. 岩土工程学报. 2022(02): 343-351 . 本站查看
    18. 周鑫鑫,魏纲,胡慧静,向青青. 内张钢圈加固盾构隧道的多环有限元模拟研究. 低温建筑技术. 2022(01): 86-91 . 百度学术
    19. 徐培凯,封坤,肖明清,张力,何川,谢俊. 盾构隧道斜螺栓-凹凸榫新型环间接头抗剪性能分析. 铁道标准设计. 2022(07): 114-119 . 百度学术
    20. 王钦,魏纲,徐天宝,章丽莎. 卸载工况下槽钢加固盾构管片的受力性能数值分析. 低温建筑技术. 2022(09): 111-116 . 百度学术
    21. 张景轩,方砚兵,封坤,李博,周子扬,张力. 输气盾构隧道环间新型连接构造抗剪性能研究. 现代隧道技术. 2022(S1): 573-582 . 百度学术
    22. 孙杰,武科,郑扬,李树忱,袁超,王修伟. 城市地铁TBM隧道掘进诱发既有建筑物变形的空间属性效应. 山东大学学报(工学版). 2021(01): 32-38 . 百度学术
    23. 丁孝兵,杨坤,陆庆虾. 移动三维激光扫描技术在地铁隧道断面检测中的应用. 城市勘测. 2021(02): 157-160 . 百度学术
    24. 陈爽,朱牧原,魏力峰,房新胜. 盾构接收处管片变形治理及衬砌方案比选. 铁道建筑技术. 2021(08): 149-152+174 . 百度学术
    25. 李瀚源,李兴高,刘浩. 隐伏正断层运动下盾构隧道结构力学响应分析. 现代隧道技术. 2021(S1): 29-39 . 百度学术

    其他类型引用(18)

计量
  • 文章访问数:  299
  • HTML全文浏览量:  8
  • PDF下载量:  162
  • 被引次数: 43
出版历程
  • 收稿日期:  2019-04-27
  • 发布日期:  2019-07-19

目录

    /

    返回文章
    返回