• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

无黏结预应力环锚衬砌力学特性原位加载试验研究

曹瑞琅, 王玉杰, 汪小刚, 齐文彪, 皮进

曹瑞琅, 王玉杰, 汪小刚, 齐文彪, 皮进. 无黏结预应力环锚衬砌力学特性原位加载试验研究[J]. 岩土工程学报, 2019, 41(8): 1522-1529. DOI: 10.11779/CJGE201908017
引用本文: 曹瑞琅, 王玉杰, 汪小刚, 齐文彪, 皮进. 无黏结预应力环锚衬砌力学特性原位加载试验研究[J]. 岩土工程学报, 2019, 41(8): 1522-1529. DOI: 10.11779/CJGE201908017
CAO Rui-lang, WANG Yu-jie, WANG Xiao-gang, QI Wen-biao, PI Jin. Mechanical properties of pre-stressed linings with un-bonded annular anchors under high internal water pressure based on large-scale in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1522-1529. DOI: 10.11779/CJGE201908017
Citation: CAO Rui-lang, WANG Yu-jie, WANG Xiao-gang, QI Wen-biao, PI Jin. Mechanical properties of pre-stressed linings with un-bonded annular anchors under high internal water pressure based on large-scale in-situ tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1522-1529. DOI: 10.11779/CJGE201908017

无黏结预应力环锚衬砌力学特性原位加载试验研究  English Version

基金项目: 国家重点研发计划项目(2016YFC0401801,2016YFC0401804); 国家自然科学基金项目(51709282,51674058)
详细信息
    作者简介:

    曹瑞琅(1985— ),男,博士,高级工程师,主要研究方向为隧道及地下工程。E-mail: Caorl@iwhr.com。

  • 中图分类号: TU43

Mechanical properties of pre-stressed linings with un-bonded annular anchors under high internal water pressure based on large-scale in-situ tests

  • 摘要: 新型无黏结环锚衬砌具备预应力损失低、薄弱区小、施工便捷等优势,但因结构复杂致使力学特性不明确,阻碍了其广泛应用。依托引松工程总干线压力隧洞,开展了首次预应力环锚衬砌大型原位加载试验,明确了内水压加载过程中衬砌预应力重分布特征,揭示了环锚拉力、钢筋应力以及锚固应力损失变化规律,并探讨了围岩和环锚衬砌联合承载作用。原位试验表明:环锚衬砌整体预应力分布均匀,高效地利用了锚索高强抗拉性和混凝土抗压性,常规钢筋作用极小,因而整体可不配筋或仅构造配筋;锚具槽背后混凝土预应力稍薄弱,是高内水压作用下结构潜在破坏区域,但内水加载过程中衬砌环向、纵向预应力值趋于一致,将有效减缓预应力薄弱部位开裂倾向;环锚衬砌具备优越的抗拉和抗渗性能,可不依赖于围岩条件而独立承载,也可利用围岩部分承载以降低预应力设计值或增加结构安全裕度,它能为覆盖层薄、地质条件差且内水压力高的大直径压力隧洞长期存在的支护难问题,提供解决新途径。
    Abstract: The new type of pre-stressed lining with un-bonded annular anchors has the advantages of low prestress loss, small weak area and convenient construction. However, its mechanical properties are not clear because of its complex structure, which hinders its wide application. The first large-scale in-situ tests on the pre-stressed ring anchor linings are carried out for the Yinsong Diversion Project. The redistribution laws of the pre-stressed linings in the process of internal hydraulic loading are clarified. The variation laws of the ring anchor tension, steel bar stress and anchorage stress loss are revealed, and the combined bearing effects of the surrounding rock and linings are discussed. The in-situ tests show that the overall prestress distribution of ring anchor linings is uniform, the high-strength tension resistance of anchor cables and the compressive resistance of concrete are utilized efficiently, and the role of the conventional reinforcement bars is very small, so the reinforcement can not be distributed or constructed as a whole. The concrete prestress behind the anchor groove is slightly weak, which is the potential damage area of the structure under the action of high internal water pressure. In the process of internal water loading, the annular and longitudinal prestress values of linings tend to be consistent, which will effectively slow down the cracking tendency of the weak parts of prestressing force. The pre-stressed linings with un-bonded annular anchors have excellent tensile and impermeable properties and independent bearing capacity without depending on the surrounding rock conditions, or can use partial bearing capacity of the surrounding rock to reduce the design prestress value or increase the structural safety margin degree. It can provide a new way to solve the long-standing support problems of large-diameter pressure tunnels with thin overburden, poor geological conditions and high internal water pressure.
  • [1] 永本隆行, 米田武志, 田中大三, 等. Large P & PC segment works: construction works for rainwater storage under Osaka International Airport[J]. トンネルと地下, 2008, 39(8): 581-859.
    (TAKAYUKI N, TAKESHI Y, DAIEO T, et al.Large P & PC segment works: construction works for rainwater storage under Osaka International Airport[J]. Tunnels and Underground, 2008, 39(8): 581-859. (in Japanese))
    [2] SUHARDIMAN D, RUTHERFORD J, BRIGHT S J.Putting violent armed conflict in the center of the Salween hydropower debates[J]. Critical Asian Studies, 2017, 49(4): 349-364.
    [3] 赵延林, 王卫军, 万文, 等. 裂隙岩体渗流-断裂耦合机制及应用[J]. 岩土工程学报, 2012, 34(4): 677-685.
    (ZHAO Yan-lin, WANG Wei-jun, WAN Wen, et al.Coupling mechanism of seepage-fracture in fractured rock mass and its application[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 677-685. (in Chinese))
    [4] VENGOSH A, JACKSON R B, WARNER N, et al.A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014,48(15): 8334-8348.
    [5] RAVKIN A A, ARKHIPOV A M.New design of reinforced concrete penstock compensator[J]. Hydrotechnical Construction, 1991, 25(3): 172-174.
    [6] TRUCCO G, ZELTNER O.Grimsel-Oberrar pumped storage system[J]. Water Power & Dam Construction, 1978(2): 351-357.
    [7] 随春娥. 小浪底无黏结环锚预应力混凝土衬砌结构应力状态及安全评价分析[D]. 天津: 天津大学, 2014.
    (SUI Chun-e.Stress analysis and safety evaluation of Xiaolangdi pre-stressed tunnel lining with unbounded circular anchored tendons[D]. Tianjin: Tianjin University, 2014. (in Chinese))
    [8] MATT P, THURNHERR F, UHERKOVICH I.Presstressed concrete pressure tunnels[M]. Berne: VSL International LTD, 1978.
    [9] 林秀山, 沈凤生. 小浪底工程后张法无黏结预应力隧洞衬砌技术研究与实践[M]. 郑州: 黄河水利出版社, 1999.
    (LIN Xiu-shan, SHEN Feng-sheng.Research and practice of post-tensioning unbounded prestressed tunnel lining technology in Xiaolangdi Project[M]. Zhengzhou: The Yellow River Water Conservancy Press, 1999. (in Chinese))
    [10] 吕联亚, 杨宇, 李晓昆, 等. 黄河小浪底水利枢纽排沙洞隧洞锚具槽渗油渗水处理[J]. 中国建筑防水, 2009(2): 36-38.
    (LÜ Lian-ya, YANG Yu, TANG Wen-ning, et al.Treatment for oil and water penetration in anchorage chanel of san discharge tunnel, Xiaolangdi key water control project[J]. Chinese Building Waterproofing, 2009(2): 36-38. (in Chinese))
    [11] TARAS A, GREINER R.Scope of the design assumption for pressure tunnel steel linings under external pressure[J]. Stahlbau, 2007(10): 730-738.
    [12] 津嘉山淳子. 「P&PCセグメント」を用いた、長距離·大口径シールドの高速施工[J]. Journal of Sewerage Monthly, 2011, 34(9): 10-15.
    (JUNKO T.Rapid construction for long distance large diameter sheild by “P & PC segment” method[J]. Journal of Sewerage Monthly, 2011, 34(9): 10-15. (in Japanese))
    [13] 亢景付, 随春娥, 王晓哲. 无黏结环锚预应力混凝土衬砌结构优化[J]. 水利学报, 2014, 45(1): 103-108.
    (KANG Jing-fu, SUI Chun-e, WANG Xiao-Zhe.Structure optimization of the pre-stressed tunnelling with un-bonded circular anchored tendons[J]. Journal of Hydraulic Engineering, 2014, 45(1): 103-108. (in Chinese))
    [14] 曹瑞琅, 王玉杰, 赵宇飞, 等. 无黏结曲线锚索式预应力衬砌结构数值建模方法研究[J]. 中国水利水电科学研究院学报, 2016, 14(6): 471-477.
    (CAO Rui-lang, WANG Yu-jie, ZHAO Yu-fei, et al.Study on numerical modeling method of the prestressed tunnel lining with unbonded curve anchored tendons[J]. Journal of China Institute of Water Resources and Hydropower Research, 2016, 14(6): 471-477. (in Chinese))
    [15] KAZUYOSHI N.Development of a prestressed and precast concrete segment lining[J]. Tunneling and Underground Space Technology, 2003(18): 243-251.
    [16] PI Jin, WANG Xiao-gang, CAO Rui-lang, et al.Innovative loading system for applying internal pressure to a test model of pre-stressed concrete lining in pressure tunnels[J]. Journal of Engineering Research, 2018, 6(2): 24-44.
    [17] SL 279—2016水工隧洞设计规范[S]. 2016. (SL 279—2016 Specification for design of hydraulic tunnels[S]. 2016. (in Chinese))
    [18] FAHIMIFAR A, SOROUSH H.A theoretical approach for analysis of the interaction between grouted rockbolts and rock masses[J]. Tunneling and Underground Space Technology, 2005, 20: 333-343.
    [19] SIMANJUNTAK T D Y F, MARENCE M, MYNETT A E, et al. Pressure tunnels in non-uniform in situ stress conditions[J]. Tunnelling & Underground Space Technology, 2014, 42(5): 227-236.
    [20] 杨伯源. 工程弹塑性力学[M]. 北京: 机械工业出版社, 2014.
    (YANG Bo-yuan.Engineering elastic-plastic mechanics[M]. Beijing: China Machine Press, 2014. (in Chinese))
    [21] 顾欣, 夏元友, 陈安敏. 在开挖与超载过程中锚固洞室锚索预应力变化特征[J]. 岩石力学与工程学报, 2007, 26(增刊2): 4238-4244.
    (GU Xin, XIA Yuan-you, CHEN An-min.Variation characteristics of anchor cable prestress during underground opening excavation and overloading[J]. Chinese Journal of Rock Mechanics Engineering, 2007, 26(S2): 4238-4244. (in Chinese))
    [22] FULVIO T.Sequential excavation, NATM and ADECO: what they have incommon and how they differ[J]. Tunnelling and underground Space Technology, 2010, 25(3): 145-265.
    [23] 吴顺川, 潘旦光, 高永涛. 深埋圆形巷道围岩和衬砌相互作用解析解[J]. 工程力学, 2011, 28(3): 136-142.
    (WU Shun-chuan, PAN Dan-guang, GAO Yong-tao.Analytic solution for rock-liner interaction of deep circular tunnel[J]. Engineering Mechanic, 2011, 28(3): 136-142. (in Chinese))
  • 期刊类型引用(7)

    1. 谢强,陈昱弛,王彦东,陈宣,刘畅. 盾构隧洞预应力双层衬砌张拉施工及控制技术研究. 人民长江. 2024(06): 176-181+187 . 百度学术
    2. 谢强,陈昱弛,王彦东,陈宣,刘畅. 无粘结预应力混凝土衬砌张拉优化方案研究. 地下空间与工程学报. 2024(S2): 811-818 . 百度学术
    3. 严振瑞,刘通胜,陈震,姚广亮,李长永,赵顺波. 输水隧洞衬砌试验用高内水压加载装置研发与承载分析. 华北水利水电大学学报(自然科学版). 2022(05): 1-5 . 百度学术
    4. 朱悦悦,刘成. 输水隧洞灌浆式预应力衬砌结构承载机理研究. 水利水运工程学报. 2022(06): 146-155 . 百度学术
    5. 郑理峰,樊博,周虹,林俊强,张迪. 不同加载状态曲线锚索沿程预应力损失试验研究. 水利与建筑工程学报. 2022(06): 1-6 . 百度学术
    6. 罗都颢,蒋思,刘建友. 大跨隧道预应力锚索承载力提升技术研究——以京张高铁八达岭长城站为例. 隧道建设(中英文). 2020(06): 873-879 . 百度学术
    7. 王磊. 预应力锚索在矿山岩土边坡工程治理中的实践分析. 世界有色金属. 2019(20): 66-67 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-06-29
  • 发布日期:  2019-08-24

目录

    /

    返回文章
    返回