• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

长壁采空区对采动煤岩应力分布规律的影响研究

王朋飞, 冯国瑞, 赵景礼, CHUGHYoginderP, 王志强

王朋飞, 冯国瑞, 赵景礼, CHUGHYoginderP, 王志强. 长壁采空区对采动煤岩应力分布规律的影响研究[J]. 岩土工程学报, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010
引用本文: 王朋飞, 冯国瑞, 赵景礼, CHUGHYoginderP, 王志强. 长壁采空区对采动煤岩应力分布规律的影响研究[J]. 岩土工程学报, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010
WANG Peng-fei, FENG Guo-rui, ZHAO Jing-li, CHUGH Yoginder P, WANG Zhi-qiang. Effect of longwall gob on distribution of mining-induced stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010
Citation: WANG Peng-fei, FENG Guo-rui, ZHAO Jing-li, CHUGH Yoginder P, WANG Zhi-qiang. Effect of longwall gob on distribution of mining-induced stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1237-1246. DOI: 10.11779/CJGE201807010

长壁采空区对采动煤岩应力分布规律的影响研究  English Version

基金项目: 国家自然科学基金青年科学基金项目(51404270); 国家留; 学基金委项目(201506430011)
详细信息
    作者简介:

    王朋飞(1988- ),男,博士,讲师,主要从事采矿与岩石力学方面的研究。E-mail: 18801448768@163.com。

  • 中图分类号: TU456

Effect of longwall gob on distribution of mining-induced stress

  • 摘要: 随着当前各类长壁采空区及其附近区段巷道留设技术的不断推广,采空区及其对采动煤岩应力分布规律影响的认识愈发重要。鉴于当下此方面的研究较少,以镇城底矿为工程背景,通过理论分析、相似模拟、数值模拟和现场实测研究了长壁采空区对采动煤岩应力分布规律的影响。多种研究方法表明,采空区承载越大,实体围岩受载则越低,反之亦然。错层位不对称工作面导致应力分布亦不对称,缓坡段采空区应力大于无缓坡段,而缓坡段侧支承压力小于无缓坡段侧,缓坡段具有压力和能量缓冲耗散作用的矸石垫层,可避免接续面巷顶沿空巷道受动载影响。得出基于采空区影响下的老顶关键块回转下沉量计算方法。断裂角越小,采空区承载越小,尤其采空区边缘应力越小。采空区会影响围岩体中应力集中区的应力集中程度、范围和方位,同时影响煤岩体塑性区大小。理论分析、模拟分析和现场实测具有较好的一致性。
    Abstract: With the development of a variety of gateroads within or close to gob, the effect of gob on the distribution of mining-induced stress is increasingly important. In view of the fact that the studies in this respect are few, Zhenchengdi colliery is investigated through theoretical analysis, physical modelling, numerical modelling and field observation. Several research means show that the more load the gob bears, the less the abutment pressure and vice versa. The longwall mining with split-level gateroad (LMSG) has an asymmetrical panel geometry, which results in asymmetrical stress distribution. It has larger gob stress and smaller abutment stress on elevating section side and smaller gob stress and larger abutment stress on non-elevating section side. The caved rock cushion is conductive to avoiding dynamic ground pressure behavior for the LMSG gob-side entry. The method for calculating the subsidence and rotation of the key blocks based on gob effect is obtained. The smaller the angle of break, the smaller the gob pressure and the smaller the gob edge pressure. The gob affects the stress concentration degree, the area and location of the stress concentration zones as well as the area of the yielded zone. The theoretical analysis, physical modelling, numerical modelling and field observation have a good consistency.
  • [1] PENG S S.Longwall mining[M]. 2nd ed. Morgantown: West Virgina University, 2006.
    [2] 钱明高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社, 2010.
    (QIAN Ming-gao, SHI Ping-wu, XU Jia-lin.Ground pressure and strata control[M]. Xuzhou: China University of Mining and Technology Press, 2010. (in Chinese))
    [3] 张俊英, 蔡美峰, 张青. 采空区地表新增荷载后地基应力的分布规律研究[J]. 岩土工程学报, 2010, 32(7): 1096-1100.
    (ZHANG Jun-ying, CAI Mei-feng, ZHANG Qing.Distribution laws of ground stress after newly increased load on surface above mined-out areas[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1096-1100. (in Chinese))
    [4] YAVUZ H.An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines[J]. International Journal of Rock Mechanics and Mining Science, 2004, 41: 193-205.
    [5] 徐光, 许家林, 吕维赟, 等. 采空区顶板导水裂隙侧向边界预测及应用研究[J]. 岩土工程学报, 2010, 32(5): 724-730.
    (XU Guang, XU Jia-lin, LÜ Wei-yun, et al.Lateral boundary prediction of water conducting fracture formed in roof and its application[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 724-730. (in Chinese))
    [6] 万虹. 地下空区稳定性的相似模拟研究[J]. 岩土工程学报, 1998, 20(6): 74-77.
    (WAN Hong.Similar imitation research on ground empty stope stability[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(6): 74-77. (in Chinese))
    [7] 王朋飞, 赵景礼, 王志强, 等. 非充分采动采空区与煤岩柱(体)耦合作用机制及应用[J]. 岩石力学与工程学报, 2017, 36(5): 1185-1200.
    (WANG Peng-fei, ZHAO Jing-li, WANG Zhi-qiang.Mechanism of gob-pillar interaction for subcritical panels and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1185-1200. (in Chinese))
    [8] 来兴平, 蔡美峰, 任奋华. 河下开采扰动诱致采空区动态失稳定量预计与综合评价[J]. 岩土工程学报, 2005, 27(12): 1421-1424.
    (LAI Xing-ping, CAI Mei-feng, REN Fen-hua.Quantitative prediction and comprehensive evaluation on dynamic destabilization of LSMA due to excavation disturbance underneath river[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1421-1424. (in Chinese))
    [9] 张清峰, 王东权. 强夯法加固煤矸石地基动应力模型试验研究[J]. 岩土工程学报, 2012, 34(6): 1142-1147.
    (ZHANG Qing-feng, WANG Dong-quan.Model tests on dynamic stress in colliery wastes improved by dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1142-1147. (in Chinese))
    [10] 方勇, 姚志刚, 符亚鹏, 等. 上覆水平煤层采空区衬砌受荷模型试验研究[J]. 岩土工程学报, 2016, 38(8): 1513-1521. FANG Yong, YAO Zhi-gang, FU Ya-peng, et al. Model tests on loading characteristics of linings in overlying horizontal coal mined-out area[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1513-1521. (in Chinese))
    [11] 蔡美峰, 来兴平. 岩石基复合材料支护采空区动力失稳声发射特征统计分析[J]. 岩土工程学报, 2003, 25(1): 51-54.
    (CAI Mei-feng, LAI Xing-ping.Statistical analysis of the character of acoustic emission for nonlinear dynamical damage in mined out areas supported by composite rock materials[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 51-54. (in Chinese))
    [12] 缪协兴, 茅献彪, 胡光伟, 等. 岩石(煤)的碎胀与压实特性研究[J]. 实验力学, 1997, 12(3): 394-400.
    (MIAO Xie-xing, MAO Xian-biao, HU Guang-wei, et al.Bulking and compaction characteristics of rock (coal)[J]. Journal of Experimental Mechanics, 1997, 12(3): 394-400. (in Chinese))
    [13] 臧亚君, 刘东燕, 彭文轩, 等. 重庆矿区矸石山体特性现场试验研究[J]. 岩土工程学报, 2009, 31(4): 558-563.
    (ZANG Ya-jun, LIU Dong-yan, PENG Wen-xuan, et al.Field tests on coal wastes in Chongqing[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 558-563. (in Chinese))
    [14] 刘松玉, 童立元, 邱钰, 等. 煤矸石颗粒破碎及其对工程力学特性影响研究[J]. 岩土工程学报, 2005, 27(5): 505-510.
    (LIU Song-yu, TONG Li-yuan, QIU Yu, et al.Crushable effects on engineering mechanical properties of colliery wastes[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 505-510. (in Chinese))
    [15] PAPPAS D M, MARK C.Behavior of simulated longwall gob material[M]. US Department of the Interior, Bureau of Mines, 1993.
    [16] 谢和平, 周宏伟, 刘建锋, 等. 不同开采条件下采动力学行为研究[J]. 煤炭学报, 2011, 36(7): 1067-1074.
    (XIE He-ping, ZHOU Hong-wei, LIU Jian-feng, et al.Mining-induced mechanical behavior in coal seams under different mining layouts[J]. Journal of China Coal Society, 2011, 36(7): 1067-1074. (in Chinese))
    [17] 余伟健, 王卫军, 文国华, 等. 深井复合顶板煤巷变形机理及控制对策[J]. 岩土工程学报, 2012, 34(8): 1501-1508.
    (YU Wei-jian, WANG Wei-jun, WEN Guo-hua, et al.Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508. (in Chinese))
    [18] WANG P F, ZHAO J L, CHUGH Y P, et al.A novel longwall mining layout approach for extraction of deep coal deposits[J]. Minerals, 2017, 7(4): 60.
    [19] FENG G R, WANG P F, CHUGH Y P, et al.A new gob-side entry layout for longwall top coal caving[J]. Energies, 2018, 11(5): 1292.
    [20] 赵景礼, 吴健. 厚煤层错层位巷道布置采全厚采煤法:中国, ZL98100544.6[P].1998-08-09. (ZHAO Jing-li. Whole seam longwall mining with split-level gate roads (LMSG) in thick coal seams: China, ZL98100544.6[P]. 1998-08-09. (in Chinese))
    [21] 赵景礼. 厚煤层全高开采的三段式回采工艺: 中国, 2004100395750[P].2004-10-03. (ZHAO Jing-li. Triple sections mining technology (TSMT) in LMSG in thick coal seams: China, 2004100395750[P]. 2004-10-03. (in Chinese))
    [22] 赵景礼. 厚煤层错层位巷道布置采全厚采煤法的研究[J]. 煤炭学报, 2004, 29(2): 142-145.
    (ZHAO Jing-li.Study on whole seam longwall mining with split-level gateroad[J]. Journal of China Coal Society, 2004, 29(02): 142-145. (in Chinese))
    [23] 张俊文, 赵景礼, 王志强. 近距残煤综放复采顶煤损伤与冒放性控制[J]. 煤炭学报, 2010, 35(11): 1854-1858.
    (ZHANG Jun-wen, ZHAO Jing-li, WANG Zhi-qiang.Top coal damage and caving characterizes control of residual coal repeated mining adopted longwall top-coal caving in contiguous seams[J]. Journal of China Coal Society, 2010, 35(11): 1854-1858. (in Chinese))
    [24] 康红普, 王金华, 林健. 煤矿巷道锚杆支护应用实例分析[J]. 岩石力学与工程学报, 2010, 29(4): 649-664.
    (KANG Hong-pu, WANG Jin-hua, LIN Jian.Case studies of rock bolting in coal mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 649-664. (in Chinese))
    [25] 白兰永. 冒落矸石自行充填沿空巷道矿压显现规律研究[J]. 金属矿山, 2011(6): 63-66.
    (BAI Lan-yong.Research on the underground pressure behavior laws of reserving space for lane along the tunnel by self-filling with breakage wastes[J]. Metal Mine, 2011(6): 63-66. (in Chinese))
    [26] 何满潮, 高玉兵, 杨军, 等. 无煤柱自成巷聚能切缝技术及其对围岩应力演化的影响研究[J]. 岩石力学与工程学报, 2017, 36(6): 1314-1325.
    (HE Man-chao, GAO Yu-bing, YANG Jun, et al.The energy-gathered roof cutting technique in non-pillar mining and its impact on stress evolution of surrounding rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1314-1325. (in Chinese))
    [27] ESTERHUIZEN G S, KARACAN C Ö.A methodology for determining gob permeability distributions and its application to reservoir modeling of coal mine longwalls[C]// SME 2007 Annual Meeting. 2007: 07-078.
    [28] TAN Y L, YU F H, NING J G, et al.Design and construction of entry retaining wall along a gob side under hard roof stratum[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77: 115-121.
    [29] YANG H, CAO S, LI Y, et al.Soft roof failure mechanism and supporting method for gob-side entry retaining[J]. Minerals, 2015(10): 707-722.
    [30] SHABANIMASHCOOL M, LI CC.Numerical modelling of longwall mining and stability analysis of the gates in a coal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 24-34.
    [31] QIAO Jian-yong.Julia sets and complex singularities of free energies[J]. Memoirs of the American Mathematical Society, 2014, 234(1102): 1.
    [32] QIAO J Y.On the preimages of parabolic periodic points[J]. Nonlinearity, 2000, 13(3): 813-818.
    [33] 蒋金泉. 采场围岩应力与运动[M]. 北京:煤炭工业出版社, 1993: 15-75.
    (JIANG Jin-quan.Stress and movenment of surrounding rock around the stope[M]. Beijing: China Coal Industry Publishing House, 1993: 15-75. (in Chinese))
    [34] Itasca Consulting Group Inc. Fast Lagrangian analysis of continua in 3 dimension, version 5.0 user’s guide[M]. Minnesota: Minneapolis, 2012.
  • 期刊类型引用(22)

    1. 宋远,黄明利,张旭东,李然. 暗挖隧道SRG拱架节点抗弯性能及参数影响机制研究. 中国公路学报. 2024(04): 286-296 . 百度学术
    2. 马艺虎,周容名,周春雨,张卫卫,王小伟,郭炎伟. 高地应力断层破碎带隧道变形及受力特征研究. 施工技术(中英文). 2024(06): 49-55 . 百度学术
    3. 陶志刚,林伟军,李勇,孙滢滢,熊弋文,陈明亮. NPR锚索对跨断层软岩大变形隧道控制技术研究. 隧道建设(中英文). 2024(S1): 113-123 . 百度学术
    4. 邹小新. 高地应力隧道支护参数优化设计研究. 工程建设与设计. 2023(01): 167-170 . 百度学术
    5. 郭新新,汪波,王振宇,于家武. 考虑蠕变特性的高应力软岩隧道变形预测方法与实践. 岩土工程学报. 2023(03): 652-660 . 本站查看
    6. 宋远,黄明利,张旭东,李然. 暗挖隧道空间网架混凝土初期支护受力特性研究. 隧道建设(中英文). 2023(02): 273-284 . 百度学术
    7. 江栋材,徐庭,易帅. 褶皱核心软弱围岩隧道大变形机理及处治研究. 建筑机械. 2023(04): 64-69 . 百度学术
    8. 胡涛涛,涂鹏,钱兴邦. 软岩隧道中不同支护设计方案的数值模拟. 中国科技论文. 2023(10): 1113-1121 . 百度学术
    9. 蔡柳洲,张金龙. 高地应力环境下深埋竖井施工稳定性控制研究. 水利水电技术(中英文). 2023(S2): 207-209 . 百度学术
    10. 王恩波,昝文博,唐琨杰,周云鹏. 深埋千枚岩隧道群变形规律及预留变形量分析. 甘肃科学学报. 2022(03): 93-98+118 . 百度学术
    11. 马行之,钟科,徐东明,翟兆玺,詹家旺,方毅. 浅埋大断面隧道过破碎带开挖支护方案对比研究——以青岛地铁6号线创智谷站为例. 隧道建设(中英文). 2022(06): 1061-1070 . 百度学术
    12. 宋远,黄明利,张旭东,张志恩. 隧道高强钢管格栅与钢筋格栅承载特性室内模型试验. 工程科学与技术. 2022(04): 99-111 . 百度学术
    13. 蒲松,叶来宾,余涛,方勇,江俊杰. 白马隧道软弱围岩掌子面稳定性研究. 地下空间与工程学报. 2022(S1): 194-201 . 百度学术
    14. 寇昊,何川,吴枋胤,杨文波,汪波,肖龙鸽. 考虑走滑断裂活动影响的公路隧道初始地应力场反演分析. 中国公路学报. 2022(09): 321-330 . 百度学术
    15. 杨才雄. 隧道浅埋偏压软弱围岩施工技术研究. 石材. 2022(12): 66-68 . 百度学术
    16. 王永东,赖宜,化思豪,王杰,杜朋鑫. 公路隧道平行导洞结合分段纵向通风系统研究. 地下空间与工程学报. 2022(06): 2090-2100 . 百度学术
    17. 方春聪. 公路隧道的施工要点. 石材. 2022(12): 63-65 . 百度学术
    18. 张俊儒,王智勇,任兆丹,孔超,徐向东,吴洁. 公路隧道钢管混凝土拱架承载力评价指标及合理选型研究. 隧道建设(中英文). 2021(04): 569-578 . 百度学术
    19. 邵珠山,李希,赵南南,张喆,乔汝佳. 高地应力软岩隧道初期支护优化研究. 中国安全生产科学技术. 2021(05): 99-105 . 百度学术
    20. 陈丽俊,陈建勋,罗彦斌,刘伟伟,王传武. 深埋大跨度绿泥石片岩隧道变形规律及合理预留变形量. 中国公路学报. 2021(06): 147-157 . 百度学术
    21. 石州,罗彦斌,陈建勋,刘伟伟,于海涛. 软弱围岩隧道锁脚锚管力学特性现场模拟试验. 公路交通科技. 2021(07): 96-106+123 . 百度学术
    22. 宋远,黄明利,张旭东,孙桐. 隧道装配式空间网架螺栓端板节点力学特性及施工技术体系研究. 土木工程学报. 2021(S1): 131-139 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  297
  • HTML全文浏览量:  19
  • PDF下载量:  215
  • 被引次数: 37
出版历程
  • 收稿日期:  2017-04-02
  • 发布日期:  2018-07-24

目录

    /

    返回文章
    返回