• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

岩溶隧道承压隐伏溶洞突水模型试验与数值分析

潘东东, 李术才, 许振浩, 李利平, 路为, 林鹏, 黄鑫, 孙尚渠, 高成路

潘东东, 李术才, 许振浩, 李利平, 路为, 林鹏, 黄鑫, 孙尚渠, 高成路. 岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J]. 岩土工程学报, 2018, 40(5): 828-836. DOI: 10.11779/CJGE201805007
引用本文: 潘东东, 李术才, 许振浩, 李利平, 路为, 林鹏, 黄鑫, 孙尚渠, 高成路. 岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J]. 岩土工程学报, 2018, 40(5): 828-836. DOI: 10.11779/CJGE201805007
PAN Dong-dong, LI Shu-cai, XU Zhen-hao, LI Li-ping, LU Wei, LIN Peng, HUANG Xin, SUN Shang-qu, GAO Cheng-lu. Model tests and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 828-836. DOI: 10.11779/CJGE201805007
Citation: PAN Dong-dong, LI Shu-cai, XU Zhen-hao, LI Li-ping, LU Wei, LIN Peng, HUANG Xin, SUN Shang-qu, GAO Cheng-lu. Model tests and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 828-836. DOI: 10.11779/CJGE201805007

岩溶隧道承压隐伏溶洞突水模型试验与数值分析  English Version

详细信息
    作者简介:

    潘东东(1989- ),男,山东泰安人,博士研究生,主要从事隧道及地下工程突涌水灾变机制的理论及试验研究。E-mail:pddyantu@163.com。

Model tests and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels

  • 摘要: 为研究不同充填水压条件下隐伏溶洞对隧道围岩稳定性的影响,进而揭示溶洞突水致灾机理,利用自主研发的大型三维流固耦合模型试验系统,针对强充填滞后型溶洞突水孕灾模式开展了试验研究,揭示了承压溶洞突水过程位移、应力及渗压的变化规律,综合模型试验与数值计算各自的优势,开展了不同充填水压下(0.4~1.1 MPa)隧道开挖过程流固耦合数值模拟,对模型试验结果进行补充验证。研究结果表明:溶洞影响范围主要集中于一倍洞径范围内,受溶洞影响普通围岩的应力水平及应力释放量均高于隔水岩体,孔隙水压力消散速度较大,位移变化相对平稳;在隧道开挖阶段,随着溶洞充填水压增大,隔水岩体应力释放率越低,渗透压力整体升高,上升梯度逐渐减小,当溶洞水压高于0.8 MPa时,位移出现明显异常;模型试验水压加载阶段真实再现了隔水岩体破裂突涌水过程,研究结果对于岩溶隧道施工过程突水灾害防控具有指导意义。
    Abstract: To study the stability of the surrounding rock of concealed karst caves under different filling water pressures and to reveal the water inrush mechanism, a self-developed new type of model test system is applied to the solid-fluid coupling model tests on lagging water-inrush of karst cave, and the variation of the multi-field information such as displacement, stress and seepage pressure is effectively revealed. The advantages of numerical analysis are used to carry out fluid-solid coupling numerical simulation of tunnel excavation process under different filling water pressures (0.4 to 1.1 MPa). Based on the results of model tests and numerical simulations, the karst cave has impact on the surrounding rock within the scope of one time the cave diameter. The stress level, stress release rate and dissipation rate of pore water pressure of the ordinary surrounding rock are higher than those of water-resisting rock mass. Among them, the displacement exhibits an obvious stable stage. In the course of excavation, the rate of stress relieving gradually decreases when the filling pressure increases. Moreover, the osmotic pressure increases as a whole, but the gradient decreases. Nevertheless, after the karst water pressure reaches 0.8 MPa, obvious change starts to appear. The process of water inrush is truly reproduced at the hydraulic loading stage. The test results are used to guide the design and construction of the similar projects.
  • [1] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. (QIAN Qi-hu. Challenges faced by underground projects construction safety and counter measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956. (in Chinese))
    [2] 李利平. 高风险岩溶隧道突水灾变演化机制及其应用研究 [D]. 济南: 山东大学, 2009. (LI Li-ping. Study on catastrophe evolution mechanism of karst water inrush and its engineering application of high risk karst tunnel[D]. Ji'nan: Shandong University, 2009. (in Chinese))
    [3] 孙 谋, 刘维宁. 高风险岩溶隧道掌子面突水机制研究[J].岩土力学, 2011, 32(4): 1175-1180. (SUN Mou, LIU Wei-ning. Research on water inrush mechanism induced by karst tunnel face with high risk[J]. Rock and Soil Mechanics, 2011, 32(4): 1175-1180. (in Chinese))
    [4] 莫阳春. 高水压充填型岩溶隧道稳定性研究[D]. 成都: 西南交通大学, 2009. (MO Yang-chun. Stability research on high water pressure filled karst caves tunnel[D]. Chengdu: Southwest Jiaotong University, 2009. (in Chinese))
    [5] 王克忠, 李仲奎. 深埋长大引水隧洞三维物理模型渗透性试验研究[J]. 岩石力学与工程学报, 2009, 28(4): 725-731. (WANG Ke-zhong, LI Zhong-kui. Study of 3D physical model test of seepage of deep-buried long and large diversion tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4): 725-731. (in Chinese))
    [6] 王经明. 承压水沿煤层底板递进导升突水机制的模拟与观测[J]. 岩土工程学报, 1999, 21(5): 546-549. (WANG Jing-ming. In-situ measurement and physical analogue on water inrush from coal floor induced by progressive intrusion of artesian water into protective aquiclude[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 546-549. (in Chinese))
    [7] 周 辉, 汤艳春, 胡大伟, 等. 盐岩裂隙渗流-溶解耦合模型及试验研究[J]. 岩石力学与工程学报, 2006, 25(5): 946-950. (ZHOU Hui, TANG Yan-chun, HU Da-wei, et al. Study on coupled penetratingdissolving model and experiment for salt rock cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 946-950. (in Chinese))
    [8] 刘爱华, 彭述权, 李夕兵, 等. 深部开采承压突水机制相似物理模型试验系统研制及应用[J]. 岩石力学与工程学报, 2009, 28(7): 1335-1341. (LIU Ai-hua, PENG Shu-quan, LI Xi-bing, et al. Development and application of similar physical model experiment system for water inrush mechanism in deep mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1335-1341. (in Chinese))
    [9] 张金才, 王建学. 岩体应力与渗流的耦合及其工程应用[J].岩石力学与工程学报, 2006, 25(10): 1981-1989. (ZHANG Jin-cai, WANG Jian-xue. Coupled behavior of stress and permeability and its engineering applications[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 1981-1989. (in Chinese))
    [10] 张志强, 阚 呈, 孙 飞, 等. 碎屑流地层隧道发生灾变的模型试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2451-2457. (ZHANG Zhi-qiang, KAN Cheng, SUN Fei, et al. Experimental study of catastrophic behavior for natm tunnel in debris flow strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2451-2457. (in Chinese))
    [11] 黄明利, 王 飞, 路 威, 等. 隧道开挖诱发富水有压溶洞破裂突水过程数值模拟[J]. 中国工程科学, 2009, 11(12): 93-96. (HUANG Ming-li, WANG Fei, LU Wei, et al. Numerical study on the process of water inrush in karst caves with hydraulic pressure caused by tunnel excavation[J]. Engineering Sciences, 2009, 11(12): 93-96. (in Chinese))
    [12] 李术才, 李利平, 李树忱, 等. 地下工程突涌水物理模拟试验系统的研制及应用[J]. 采矿与安全工程学报, 2010, 27(3): 299-304. (LI Shu-cai, LI Li-ping, LI Shu-chen, et al. Development and application of similar physical model test system for water inrush of underground engineering[J]. Journal of Mining and Safety Engineering, 2010, 27(3): 299-304. (in Chinese))
    [13] 李术才, 周 毅, 李利平, 等. 地下工程流-固耦合模型试验新型相似材料的研制及应用[J]. 岩石力学与工程学报, 2012, 31(6): 1128-1137. (LI Shu-cai, ZHOU Yi, LI Li-ping, et al. Research of a new similar material for underground engineering fluid-solid coupling model test and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1128-1137. (in Chinese))
    [14] 石少帅. 深长隧道充填型致灾构造渗透失稳突涌水机制与风险控制及工程应用[D]. 济南: 山东大学, 2014. (SHI Shao-shuai. Study on seepage failure mechanism and risk control ofwater inrush induced by filled disaster structure in deep-long tunnel and engineering application[D]. Ji'nan: Shandong University, 2014. (in Chinese))
    [15] 李术才. 隧道突水突泥灾害源超前地质预报理论与方法[M]. 北京: 科学出版社, 2015. (LI Shu-cai. The theory and method of geological prediction for the disaster source of water and mud inrush in tunnels[M]. Beijing: Science Press, 2015. (in Chinese))
    [16] 胡耀青, 赵阳升, 杨 栋. 三维固流耦合相似模拟理论与方法[J]. 辽宁工程技术大学学报 (自然科学版), 2007, 26(2): 204-206. (HU Yao-qing, ZHAO Yang-sheng, YANG Dong. 3D solid-liquid couping experiment study of deformation destruction of coal[J]. Journal of Liaoning Technical University (Natural Science), 2007, 26(2): 204-206. (in Chinese))
    [17] Itasca Consulting Group Inc. FLAC 3D user manuals (version3.0)[R]. Minnesota: Itasca Consulting Group, Inc, 2005.
  • 期刊类型引用(20)

    1. 张文栋,程岩,袁武立,郑龙浩. 降雨作用下黄土基岩滑坡变形特征及演化规律. 陕西水利. 2025(04): 112-114+126 . 百度学术
    2. 许博闻,兰恒星,刘世杰. 界面形态对黄土-泥岩接触面剪切力学特性影响研究. 工程地质学报. 2024(02): 448-462 . 百度学术
    3. 黄晓虎,魏兆亨,易武,郭飞,黄海峰,肖宇煌. 裂隙优势流入渗诱发堆积层滑坡浅层破坏机理研究. 岩土工程学报. 2024(06): 1136-1145 . 本站查看
    4. 赵宽耀,许强,陈婉琳,彭大雷,高登辉. 黄土塬边漫灌区土体水入渗过程研究. 岩土力学. 2024(09): 2754-2764 . 百度学术
    5. 王立朝,任三绍,李金秋. 降雨作用下古滑坡复活机理物理模拟试验研究. 中国地质灾害与防治学报. 2024(05): 21-31 . 百度学术
    6. 王诏楷. 地下水人工回灌颗粒沉积研究进展. 江淮水利科技. 2023(01): 9-14 . 百度学术
    7. 周峙,罗易,张家铭,孙狂飙. 考虑裂隙面积率的裂隙性黏土优势流双域入渗规律研究. 安全与环境工程. 2023(02): 109-118 . 百度学术
    8. 吴玮江,宋丙辉,刘迪,安亚鹏. 黄土塬区包气带水分运移特征研究. 水文地质工程地质. 2023(03): 12-22 . 百度学术
    9. 曾鹏,王宇豪,张天龙,张琳,南骁聪. 基于NSGA-Ⅱ遗传算法的黄土滑坡参数反分析与稳定性预测. 地球科学. 2023(05): 1675-1685 . 百度学术
    10. 冯乐涛,吴玮江,刘兴荣,宿星,万朝东. 黄土高原降水入渗方式与引发滑坡研究——以甘肃黄土地区为例. 科学技术与工程. 2023(14): 5937-5945 . 百度学术
    11. 许增光,李海洋,柴军瑞,曹成,陈东来. 堤坝内集中渗漏通道与周围介质水量交换研究. 水力发电学报. 2023(07): 12-23 . 百度学术
    12. 赵宽耀,许强,高登辉,刘方洲,彭大雷,陈婉琳. 坡底饱和型黄土滑坡离心模拟试验. 岩土力学. 2023(11): 3213-3223 . 百度学术
    13. 赵鲁庆,彭建兵,马鹏辉,冷艳秋,朱兴华. 黄土细观界面及其灾害效应研究初探. 工程地质学报. 2023(06): 1783-1798 . 百度学术
    14. 许强,陈婉琳,蒲川豪,袁爽,刘佳良. 基于自然的解决方案在黄土高原重大工程灾变防控中的理论与实践. 工程地质学报. 2022(04): 1179-1192 . 百度学术
    15. 宁瑞浩,冷艳秋,何芝远,李泽坤,马哲. 基于CT的黄土孔隙尺度优先流特性. 科学技术与工程. 2022(23): 9927-9936 . 百度学术
    16. 蒋小虎,黄跃廷,胡海军,陈铄,陈锐,王崇华,汪慧,康顺祥. 基于原位双环、试坑浸水试验和数值模拟反演的Q_3黄土饱和渗透系数对比研究. 岩土力学. 2022(11): 2941-2951 . 百度学术
    17. 李同录,汪颖,胡向阳,李萍,王宇. 厚层非饱和黄土中优势流和活塞流的讨论. 工程地质学报. 2022(06): 1842-1848 . 百度学术
    18. 张永双,吴瑞安,任三绍. 降雨优势入渗通道对古滑坡复活的影响. 岩石力学与工程学报. 2021(04): 777-789 . 百度学术
    19. 孙恒飞,朱兴华,成玉祥,张智锋,张卜平,蔡佳乐. 黄土优势渗流研究进展与展望. 自然灾害学报. 2021(06): 1-12 . 百度学术
    20. 侯孝东,涂国祥,邱潇,李明,王清,钱昭宇. 汉源九襄地区深厚砾石层渗透特性研究. 水利与建筑工程学报. 2020(04): 192-197 . 百度学术

    其他类型引用(22)

计量
  • 文章访问数:  470
  • HTML全文浏览量:  23
  • PDF下载量:  460
  • 被引次数: 42
出版历程
  • 修回日期:  2017-03-01
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回