File failed to load: https://mathjax.xml-journal.net/platformTools/js/MathJax-master/config/TeX-AMS-MML_SVG.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

论有效应力原理与有效应力

杜修力, 张佩, 许成顺, 路德春

杜修力, 张佩, 许成顺, 路德春. 论有效应力原理与有效应力[J]. 岩土工程学报, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012
引用本文: 杜修力, 张佩, 许成顺, 路德春. 论有效应力原理与有效应力[J]. 岩土工程学报, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012
DU Xiu-li, ZHANG Pei, XU Cheng-shun, LU De-chun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012
Citation: DU Xiu-li, ZHANG Pei, XU Cheng-shun, LU De-chun. On principle of effective stress and effective stress[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 486-494. DOI: 10.11779/CJGE201803012

论有效应力原理与有效应力  English Version

基金项目: 国家自然科学基金创新研究群体项目(51421005); 长江学者和创新团队发展计划项目(IRT13044); 国家自然科学基金面上项目 (51578026)
详细信息
    作者简介:

    杜修力(1962-),男,教授,博士生导师,主要从事岩土地震工程方面的研究与教学工作。E-mail:duxiuli@bjut.edu.cn。

On principle of effective stress and effective stress

  • 摘要: 有效应力原理是土力学区别于一般固体力学的基础,是土力学的核心基石。Terzaghi有效应力原理从提出至今就一直饱受争议,特别是有关Terzaghi有效应力的近似性问题是争议的焦点。从有效应力原理的任务出发,阐明有效应力原理的内涵是土体可量测荷载效应—外荷载间的一般规律。指出有效应力的作用是联接土体强度、变形等可量测荷载效应与外荷载间的纽带,定义对土体强度特性和变形行为等可量测荷载效应产生直接影响的土体应力为有效应力,因此,有效应力不是唯一的,它们是土体中真实存在应力的名义表述,可以依据应力平衡原理和流体压力与土颗粒间的相互作用关系给出,不同的有效应力定义就对应不同的有效应力计算公式,从而解释了Terzaghi有效应力原理近似性的原因。提出了强度相关有效应力和变形相关有效应力(Terzaghi有效应力)的概念,严格推导了他们的计算表达式,阐述了强度相关有效应力与土体剪切强度、变形相关有效应力与土体变形的一般关系。进一步,基于莫尔库仑强度准则,推导了土体抗剪强度与Terzaghi有效应力和孔压的关系。
    Abstract: The principle of effective stress is the key stone of soil mechanics, which becomes the fundamental difference between soil mechanics and solid mechanics. As it is put forward, the principle of effective stress is always in the debate, and the discussion focus is its approximation. From the analysis of the assignment of the principle of effective stress, the connotation of the principle of effective stress is illustrated as the general rule between the measurable effects and external loads. The effective stress establishes a connecting bond on the external loads and the measurable effects such as strength or deformation, which is defined as the stress that can influence the measurable effects such as strength or deformation directly. Therefore, the effective stress is not unique, which is the nominal term of real stress and can be given according to the equilibrium of forces and the interaction of soil particles. The different formulas correspond to different definitions of the effective stress, which explains the approximation of Terzaghi principle of effective stress. Then, the physical meanings of the effective stress related to the strength and the deformation are given respectively, indicating the general law of effective stress-strength or effective stress-deformation. Based on the Mohr-Coulomb strength theory, the relationship between the effective stress related to strength and the shear strength is established.
  • [1] TERZAGHI K.Die berechnung der durchlässigkeitsziffer des tones aus dem verlauf der hydrodynamischen Spannungserscheinungen[J]. Sitzungber Akad Wiss Wien, 1923, 132: 125-138.
    [2] TERZAGHI K.The shearing resisitance of saturated soils and the angle between the planes of shear[C]// Proceedings of the 1st International Conference on Soil Mechanics and Foundation Engineering. New York, 1936, 1: 54-56.
    [3] MITCHELL J K, SOGA K.Fundamentals of soil behavior[M]. 3rd ed. New York: John Wiley & Sons, 2005.
    [4] SKEMPTON A W.Effective stress in soils, concrete and rock[C]// Conference on Pore Pressure and Suction in Soils. Butterworths, 1960.
    [5] OKA F.Validity and limits of the effective stress concept in geomechanics[J]. Mechanics of Cohesive-Frictional Materials, 1996(1): 219-234.
    [6] 李广信. 有效应力原理能够推翻吗[J]. 岩土工程界, 2007, 10(7): 22-26.
    (LI Guang-xin.Can the principle of effective stress be overthrew[J]. Geotechnical Engineering World, 2007, 10(7): 22-26. (in Chinese))
    [7] 李广信. 关于有效应力原理的几个问题[J]. 岩土工程学报, 2011, 33(2): 315-320.
    (LI Guang-xin.Some problems about the principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 315-320. (in Chinese))
    [8] 邵龙潭. 饱和土的骨架应力方程[J]. 岩土工程学报, 2011, 33(12): 1833-1837.
    (SHAO Long-tan.Skeleton stress equation for saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1833-1837. (in Chinese))
    [9] 路德春, 杜修力, 许成顺. 有效应力原理解析[J]. 岩土工程学报, 2013, 35: 146-151.
    (LU De-chun, DU Xiu-li, XU Cheng-shun.Analytical solutions to principle of effective stress[J]. Chinese Journal of Geotechnical Engineering, 2013, 35: 146-151. (in Chinese))
    [10] HOFFMAN O.Permeazoni d'Acqua e loro Effetinei Muri di Ritenuta, Hoepli, Milan, 1929.
    (HOFFMAN O.Seepage water and its influence on walls[M]. Milan, Hoepli, 1929. )
    [11] FILLUNGER P.Auftrieb und Unterdruck in Staumauern[C]// Gesamtberieht, Zweite Weltkraftkonferenz. Berlin, 1930: 323-329.
    (FILLUNGER P.Bouncy and negative pressure in reservoir dam[C]// Proceedings of the 2nd Conference on Transportation and World Power. Berlin, 1930: 323-329. )
    [12] LUBINSKI A.The theory of elasticity for porous bodies displaying a strong pore structure[C]// Proceedings of the 2nd US National Congress on Applied Mechanics. Michigan, 1954: 247-256.
    [13] BIOT M A.Theory of elasticity and consolidation for a porous anisotropic solid[J]. Journal of Applied Physics, 1955, 26(2): 182-185.
    [14] SCHIFFMAN R L.The stress components of a porous medium[J]. Journal of Geophysical Research, 1970, 75(20): 4035-4038.
    [15] SKEMPTON A W, Bishop A W.Soils in building materials, their elasticity and inelasticity[M]. Amsterdam: North Holland Publishing Company, 1954: 417-482.
    [16] BHISHOP A W.The principle of effective stress[J]. Norwegian Geotechnical Institute, 1960, 32: 1-5.
    [17] 曹宇春. 考虑骨架压缩效应的饱和土有效应力原理[J]. 施工技术, 2013, 42(6): 7-11.
    (CAO Yu-chun.Effective stress principle of saturated soils in terms of skeleton compressibility[J]. Construction Technology, 2013, 42(6): 7-11. (in Chinese))
    [18] BIOT M A.General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
    [19] GASSMANN F.UÈ ber die ElastizitaÈt poroÈser Medien, Vierteljahrsschrift der Naturforschenden Gesellschaft in ZuÈrich, 1951, 96: 1-23.
    (GASSMANN F.About the elasticity of porous media[J]. Quarterly Journal of the Naturforschenden Gesellschaft in Zurich, 1951, 96: 1-23. (in German))
    [20] BIOT M A, WILLIS D G.The elastic coefficients of the theory of consolidation[J]. Journal of Applied Mechanics, 1957, 24(2): 594-601.
    [21] BISHOP A W.The influence of an undrained change in stress on the pore pressure in porous media of low compressibility[J]. Géotechnique, 1973, 23(3): 435-442.
    [22] LADE P V, DE BOER R.The concept of effective stress for soil, concrete and rock[J]. Géotechnique, 1997, 47(1): 61-78.
    [23] CHEN M, CHEN Z D.Effective stress laws for multi- porosity media[J]. Applied Mathematics and Mechanics, 1999, 11(20): 1207-1213.
    [24] BORJA R I.On the mechanical energy and effective stress in saturated and unsaturated porous continua[J]. International Journal of Solids and Structures, 2006, 43(6): 1764-1786.
    [25] ZHANG Z C, CHENG X H.Effectives stress in saturated soil: a granular solid hydrodynamics approach[J]. Granular Matter, 2014, 16: 761-769.
    [26] SUKLJE L.Rheological aspects of soil mechanics[J]. Hydrotechnical Construction, 1969, 5(3): 300-301.
    [27] BISHOP A W, SKINNER A E.The influence of high pore-water pressure on the strength of cohesionless soils[J]. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1977, 284(1318): 91-130.
    [28] Al-KARNI A A. Effect of pore water pressure on stress- strain characteristics of dense sand[J]. Soil and Rock Behavior and Modeling, 2014, 94(3): 35-41.
    [29] XIA H, HU T.Effects of saturation and back pressure on sand liquefaction[J]. Journal of Geotechnical Engineering, 1991, 9(117): 1347-1362.
    [30] 黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313-1319.
    (HUANG Bo, WANG Qing-jing, LING Dao-sheng et al. Effects of back pressure on shear strength o saturated sand in triaxial tests[J]. Chineses Journal of Geotechnical Engineering, 2012, 34(7): 1313-1319. (in Chinese))
    [31] HYODO M, YONEDA J, YOSHIMOT N, et al.Mechanical and dissociation properties of methane hydrate - bearing sand in deep seabed[J]. Soils and Foundations, 2013, 53(2): 299-314.
    [32] HYODO M, NAKATA Y, YOSHIMOTO N, et al.Mechanical behavior of methane hydrate-supported sand[C]// International Symposium on Geotechnical Engineering Ground Improvement and Geosynthetics for Human Security and Environmental Preservation. Thailand, 2007: 195-208.
    [33] MIYAZAKI K, MASUI A, SAKAMOTO Y, et al.Triaxial compression properties of artificial methane-hydrate-bearing sediment[J]. Journal of Geophysical Research Solid Earth, 2011, 116(B6): 309-319.
    [34] 许成顺, 耿琳, 杜修力, 等. 反压对土体强度特性的影响试验研究及其影响机理分析, 2016, 49(3): 105-111.
    (XU Cheng-shun, GENG Lin, DU Xiu-li et al. Effect of back pressure on shear strength of sand: experimental study and mechanism analysis[J]. China Civil Engineering Journal, 2016, 49(3): 105-111. (in Chinese))
    [35] SANTAMARINA J C.Soil behavior at the microscale particle force[J]. In Germaine J T, Sheahan T C and Whitman R V Edition, Soil Behavior and Soft Ground Construction, ASCE Geotechnical Special Publication, 2003(119): 25-56.
    [36] 张敏, 许成顺, 杜修力, 等. 中主应力系数及应力路径对砂土剪切特性影响的真三轴试验研究[J]. 水利学报: 2015, 46(9): 1072-1079.
    (ZHANG Min, XU Cheng-shun, DU Xiu-li, et al.True triaxial experimental research on shear behaviors of sand under different intermediate principle stress and different stress path[J]. Chinese Journal of Hydraulic Engineering, 2015, 46(9): 1072-1079. (in Chinese))
    [37] 郑永来, 邓树新, 李文峋, 等. 中主应力对散粒体材料强度和变形影响的数值模拟研究[J]. 岩石力学与工程学报, 2015, 34(增刊1): 3389-3396.
    (ZHENG Yong-lai, DENG Shun-xin, LI Wen-xun, et al.Numerical simulation study of influence of intermediate principal stress on strength and deformation of granular materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3389-3396. (in Chinese))
    [38] 迟明杰, 李小军, 周正华, 等. 中主应力对砂土强度影响的细观机制研究[J]. 岩土力学, 2010, 31(12): 3751-3757.
    (CHI Ming-jie, LI Xiao-jun, ZHOU Zheng et al. Meso-scale study of effects of intermediate principal stress on strength of sand[J]. Chinese Journal of Rock and Soil Mechanics, 2010, 31(12): 3751-3757. (in Chinese))
    [39] 路德春. 基于广义非线性强度理论的土的应力路径本构模型[D]. 北京: 北京航空航天大学, 2006.
    (LU De-chun.A constitutive model for soils considering complex stress paths based on the generalized nonlinear strength theory [D]. Beijing: Beihang University, 2006. (in Chinese))
    [40] 路德春, 杜修力. 岩石材料的非线性强度与破坏准则研究[J]. 岩石力学与工程学报, 2013, 32(12): 2394-2408.
    (LU De-chun, DU Xiu-li.Research on nonlinear strength and failure criterion of rock material[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2394-2408. (in Chinese))
    [41] 杜修力, 马超, 路德春. 岩土类材料的静水压力效应[J].岩石力学与工程学报, 2015, 34(3): 572-582.
    (DU Xiu-li, MA Chao, LU De-chun.Effect of hydrostatic pressure on geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 572-582. (in Chinese))
  • 期刊类型引用(14)

    1. 邹新军,杨紫健,吴文兵. 非饱和土地基中端承桩对SH波的水平地震响应. 岩土工程学报. 2024(01): 72-80 . 本站查看
    2. 熊征,李艳秋,陈起,龙星言,吴阳. 钢管混凝土立柱桩一次浇筑成形技术研究. 建筑施工. 2024(01): 102-105 . 百度学术
    3. 林浩,郑长杰,丁选明. 层状地基中海洋大直径管桩水平动力响应分析. 岩土力学. 2024(06): 1873-1883 . 百度学术
    4. 叶梓,陈永辉,孔纲强,陈庚,徐洁,胡楠. 基于COMSOL的非饱和土中单桩垂直动力特性研究. 振动与冲击. 2024(12): 46-52 . 百度学术
    5. 刘君,王立安,郭锋. 饱和黏土地基中桩基水平振动的时域半解析法研究. 振动与冲击. 2024(13): 90-97 . 百度学术
    6. 余云燕,冯一帆,王立安. 水平瞬态荷载作用下桩土动力相互作用研究. 湖南大学学报(自然科学版). 2024(11): 187-196 . 百度学术
    7. 徐其. 激振荷载作用下桩基础变形及力学响应特性试验研究. 江西建材. 2024(12): 267-269+272 . 百度学术
    8. 黄娟,胡钟伟,余俊,李东凯. 考虑黏性的液化土中水平振动桩基桩顶阻抗研究. 岩土力学. 2023(05): 1445-1456 . 百度学术
    9. 黄朝龙,陈少林,张丽芳,沈吉荣. 水深对跨库区桥梁地震响应的影响分析. 地震工程与工程振动. 2023(05): 33-45 . 百度学术
    10. 曹小林,周凤玺,戴国亮,龚维明. 激振荷载作用下桩基础动力响应的现场试验分析. 岩土工程学报. 2023(S1): 171-175 . 本站查看
    11. 蒋建平,孙宏涛,高嘉若. V-H荷载作用下海洋平台吸力式桩桶桩土承载特性研究. 海洋工程. 2023(06): 1-10 . 百度学术
    12. 曹小林,周凤玺,戴国亮. 水平荷载作用下饱和土与单桩的相互作用动力响应分析. 岩土工程学报. 2023(S2): 73-78 . 本站查看
    13. 耿庆祥. 硬岩地质中钢管桩支架施工技术探讨. 工程建设与设计. 2022(07): 192-195 . 百度学术
    14. 张玲,岳梢,刘亚楠,彭文哲. 斜坡基桩水平动力响应解析解. 湖南大学学报(自然科学版). 2022(07): 66-74 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  922
  • HTML全文浏览量:  21
  • PDF下载量:  1588
  • 被引次数: 20
出版历程
  • 收稿日期:  2016-06-26
  • 发布日期:  2018-03-24

目录

    /

    返回文章
    返回