• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

某古建筑砖土结构基座病害探测分析

朱才辉, 李宁, 郭炳煊, 刘钦佩

朱才辉, 李宁, 郭炳煊, 刘钦佩. 某古建筑砖土结构基座病害探测分析[J]. 岩土工程学报, 2018, 40(1): 169-176. DOI: 10.11779/CJGE201801018
引用本文: 朱才辉, 李宁, 郭炳煊, 刘钦佩. 某古建筑砖土结构基座病害探测分析[J]. 岩土工程学报, 2018, 40(1): 169-176. DOI: 10.11779/CJGE201801018
ZHU Cai-hui, LI Ning, GUO Bing-xuan, LIU Qin-pei. Defect detection of an ancient building with brick-clay structure base[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 169-176. DOI: 10.11779/CJGE201801018
Citation: ZHU Cai-hui, LI Ning, GUO Bing-xuan, LIU Qin-pei. Defect detection of an ancient building with brick-clay structure base[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 169-176. DOI: 10.11779/CJGE201801018

某古建筑砖土结构基座病害探测分析  English Version

基金项目: 国家自然科学基金项目(51678484); 陕西省黄土力学与工程重点实验室科研计划项目(16JS073)
详细信息
    作者简介:

    朱才辉(1983-),男,陕西商南人,博士,副教授,主要从事黄土力学与工程、地下洞室稳定性分析等方面的教学与研究工作。E-mail:zhucaihui123@163.com。

  • 中图分类号: TU444

Defect detection of an ancient building with brick-clay structure base

  • 摘要: 古建筑基座主要由砖-土材料构成,因年久失修而产生的病害问题较为严重。以某古建筑为研究对象,采用地质雷达和面波等无损探测方法,结合土壤电阻法和TDR等方法对其水害和结构病害特征进行大量现场监测,结果表明:①降雨后,基座外砖墙以内厚约3.0 m范围和内置排水管外围约1.0 m范围内的夯土层饱和度明显高于其他部位,由于外墙裂缝、内置排水管管口裂缝及海墁下部防渗层的失效等,是造成基座渗漏水、泛碱、脱皮的主要诱因;②基座顶部以下5.0 m深度范围内的砖土结构损伤较底部严重,且基座4个侧面的病害差异分布不均;③受降雨影响,基座顶部夯土层的含水率有上升趋势,基座底部的含水率明显高于基座中上部,电阻率也明显低于中上部,但基座底部夯土层和地基内含水率呈下降趋势,表明基座上部的水分有向基座底部和地基内迁移的趋势。通过多角度的相互验证研究,为深入探索古建筑基座结构病害的形成机制提供了一套可行的研究思路。
    Abstract: The ancient building base (ABB) was almost constructed with brick and clay, and the structural ddfects induced by disrepair tend to be a serious problem. In this study, the ground penetrating radar (GPR), surface wave exploration (SWE), soil electrical resistivity method (SER) and time domain reflector method (TDR) are used to detect the structural defects and water migration. The investigation results show that: (1) After the rain, the saturation degrees of rammed earth (about 3.0 m in depth inside the the brick wall and 1.0 m in depth around the built-in drain-pipe) are obviously higher than those of the other regions, demonstrating that the causes for water leakage, brick wall crystalline bloom and peeling are cracks in the the brick wall, cracks in drain-pipe and invalidation of waterproof layer; (2) The damage degree of base top (about 5.0 m in depth) is much more serious than that of the base bottom, and the damage degrees of four side walls are unevenly distributed; (3) Because of the rainfall infiltration, the water content of rammed earth at the base top has an increasing trend, and the water content at the base bottom is higher than that at the base top. The average SER at the upper parts of ABB is larger than that at the lower parts, showing a slow decreasing tendency whether it rains or not. It is indicated that the water in the rammed earth migrates from the top to the bottom. This study can provide a set of research methods for exploring the defects formation mechanism of ABB.
  • [1] ICOMOS. Recommendations for the analysis, conservation and structural restoration of architectural heritage[S]. 2001.
    [2] FANG S Q, ZHANG K, ZHANG H, et al.A study of traditional blood lime mortar for restoration of ancient buildings[J]. Cement and Concrete Research, 2015, 76: 232-241.
    [3] IUCOLANO F, LIGUORI B, COLELLA C.Fibre-reinforced lime-based mortars: A possible resource for ancient masonry restoration[J]. Construction and Building Materials, 2013, 38: 785-789.
    [4] 张景科, 谌文武, 李最雄, 等. 土遗址锚固用 PS-(C+F)浆液性能与结石体耐久性室内试验[J]. 岩土工程学报, 2015, 37(10): 1802-1809.
    (ZHANG Jing-ke, CHEN Wen-wu, LI Zui-xiong, et al.Laboratory tests on property and durability of PS-(C+F) slurry used in anchoring conservation of earthen sites[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(10): 1802-1809. (in Chinese))
    [5] 邓明科, 樊鑫淼, 高晓军, 等. ECC面层加固受损砖砌体墙抗震性能试验研究[J]. 工程力学, 2015, 32(4): 120-129.
    (DENG Ming-ke, FAN Xin-miao, GAO Xiao-jun, et al.Experimental investigation on seismic behavior of damaged brick masonry wall strengthened with ECC splint[J]. Engineering Mechanics, 2015, 32(4): 120-129. (in Chinese))
    [6] 谌文武, 郭志谦, 徐彦荣, 等. 基于SH 加固材料的土遗址夯土试样室内滴渗试验研究[J]. 岩土工程学报, 2015, 37(8): 1517-1523.
    (CHEN Wen-wu, GUO Zhi-qian, XU Yan-rong, et al.Laboratory tests on rammed earth samples of earthen sites instilled by reinforcement material SH[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1517-1523. (in Chinese))
    [7] 崔凯, 谌文武, 韩琳, 等. 干旱区土遗址掏蚀区土盐渍劣化与风蚀损耗效应[J]. 岩土工程学报, 2011, 33(9): 1412-1418.
    (CUI Kai, CHEN Wen-wu, HAN Lin, et al.Effects of salinized deterioration and aeolian ullage on soils in undercutting area of earthern ruins in arid region[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1412-1418. (in Chinese))
    [8] 张虎元, 严耿升, 赵天宇, 等. 土建筑遗址干湿耐久性研究[J]. 岩土力学,2011,32(2): 347-355.
    (ZHANG Hu-yuan, YAN Geng-sheng, ZHAO Tian-yu, et al.Durability of earthen architecture ruins under cyclic wetting and drying[J]. Rock and Soil Mechnics, 2011, 32(2): 347-355. (in Chinese))
    [9] XIAO Y, FU X, GU H B, et al.Properties, characterization, and decay of sticky rice-lime mortars from the Wugang Ming dynasty city wall (China)[J]. Materials Characterization, 2014, 90: 164-172.
    [10] MARTÍNEZ I, CASTILLO A, MARTÍNEZ E, et al. Physico- chemical material characterization of historic unreinforced masonry buildings: The first step for a suitable intervention[J]. Construction and Building Materials, 2013, 40: 352-360.
    [11] PINEDA P, ROBADOR M D, PEREZ-RODRIGUEZ J L. Characterization and repair measures of the medieval building materials of a Hispanic-Islamic construction[J]. Construction and Building Materials, 2013, 41: 612-633.
    [12] WANG Q, MA G Y, HE L Y, et al.Characterization of bacterial community inhabiting the surfaces of weathered bricks of Nanjing Ming city walls[J]. Science of the Total Environment, 2011, 409: 756-762.
    [13] LABROPOULOS K, MOROPOULOU A.Ground penetrating radar investigation of the bell tower of the church of the Holy Sepulchre[J]. Construction and Building Materials, 2013, 47: 689-700.
    [14] SOLLA M, LORENZO H, RIAL F I, et al.Ground- penetrating radar for the structural evaluation of masonry bridges: Results and interpretational tools[J]. Construction and Building Materials, 2012, 29: 458-465.
    [15] SOLDOVIERI F, PRISCO G, PERSICO R.Determination of soil permittivity from GPR data and a microwave tomography approach a preliminary study[C]// Advanced Ground Penetrating Radar, 2007 4th International Workshop, 2007: 96-100.
    [16] WEIHERMULLER L, HUISMAN J A, LAMBOT S, et al.Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques[J]. Journal of Hydrology, 2007, 340: 205-216.
    [17] D’AMBRISI A, MARIANI V, MEZZI M. Seismic assessment of a historical masonry tower with nonlinear static and dynamic analyses tuned on ambient vibration tests[J]. Engineering Structures, 2012, 36: 210-219.
    [18] OSMANCIKLI G, UCAK S, TURAN N, et al.Investigation of restoration effects on the dynamic characteristics of the Hagia Sophia bell-tower by ambient vibration test[J]. Construction and Building Materials, 2012, 29: 564-572.
    [19] SANDROLINI F, FRANZONI E.An operative protocol for reliable measurements of moisture in porous materials of ancient buildings[J]. Building and Environment, 2006, 41: 1372-1380.
    [20] 杨成林. 瑞雷波勘探[M]. 北京: 地质出版社, 1993: 13-69.
    (YANG Cheng-lin.Rayleigh wave exploration[M]. Beijing: Geology Publishing House (in Chinese), 1993: 13-69. (in Chinese))
    [21] 杨桂通, 张善元. 弹性动力学[M]. 北京: 中国铁道出版社, 1988: 101-116.
    (YANG Gui-tong, ZHANG Shan-yuan.Elastokinetics[M]. Beijing: China Railway Publishing House, 1988: 101-116. (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-07
  • 发布日期:  2018-01-24

目录

    /

    返回文章
    返回