Filling standards and gradation optimization of rockfill materials
-
摘要: 基于分形理论,进行了大量堆石料室内相对密度试验、压缩试验以及三轴试验,对堆石料级配与干密度、压缩模量、破坏强度、颗粒破碎等工程特性之间的关系进行了深入研究。结果表明:①级配对堆石料的物理力学性质影响明显,且随着试验应力的增加,其差异性越来越大。如粒度分形维数D在2.22~2.63的良好级配范围内,制样相对密度取1.0时,堆石料干密度在2.026~2.311 g/cm3之间,相差14%;在3.2~6.4 MPa压力范围内的压缩模量相差2.47倍;制样相对密度取0.8时,在1.6 MPa围压时的三轴试验破坏剪应力相差23%。②相同相对密度条件下,随着粒度分形维数的增加,堆石料的极值干密度或孔隙率、压缩模量、破坏应力均表现为先增大、后减小的规律,在D=2.56~2.62附近均存在极值点,对应P5含量在35%左右,细粒含量过多时的“砂化”现象,导致颗粒骨架效应减弱,堆石的工程性质劣化,极值点对应的临界分形维数控制堆石料的工程性质。③堆石料的粒度分形维数与颗粒破碎之间存在良好的规律,即粒度分形维数越高,颗粒破碎越小,可通过级配优化设计控制堆石料的颗粒破碎。④基于堆石体的孔隙率可描述为粒度分形维数和相对密度的函数,首次提出了基于变形控制的孔隙率和相对密度双控指标,作为高坝堆石体的填筑标准,并结合如美300 m级堆石坝,提出了堆石料级配优化确定的方法。Abstract: Based on the fractal theory, a large number of relative density tests, compression tests and triaxial tests on rockfill are carried out. The relationships among gradation, dry density, compressive modulus, failure strength and particle breakage of rockfill are thoroughly investigated. The results show that: (1) The particle gradation has obvious effect on the physical and mechanical properties of rockfill, such as when the particle fractal dimension D is in a good gradation ranging from 2.22 to 2.63, the relative density of samples is 1.0, and the dry density of rockfill is 2.026 ~ 2.311 g/cm3, the differences increase by 14%. The compressive modulus in the range of 3.2 ~ 6.4 MPa increases by 2.47 times. The test breaking strength of triaxial tests under confining pressure of 1.6 MPa increases by 23%. (2) Under the same relative density, with the increase of the particle fractal dimension D, the values of extreme dry density or porosity, compressive modulus and shear failure strength of rockfill materials increase firstly and then decrease, the extreme points occur at D = 2.56 ~ 2.62, and the corresponding P5 content is about 35%. The differences of the above values are more and more obvious with the increasing stress. When the content of fine particles is too high, the "sanding" phenomenon decreases the particle matrix effect and the engineering properties of rockfill are deteriorated, and the critical fractal dimension corresponding to the extreme points is adopted to control the engineering properties of rockfill materials. (3) There is a good rule between the fractal dimension of rockfill and the particle crushing, that is, the higher the fractal dimension of the particle gradation is, the smaller the particle crushing is, and it is effective to control the particle crushing of rockfill through the optimal design of the gradation. (4) Because the porosity of rockfill can be described as a function of fractal dimension and relative density of particles, the double control standards of porosity and relative density based on the deformation control of high
-
Keywords:
- fractal theory /
- rockfill material /
- porosity /
- relative density /
- filling standard /
- particle breakage /
- gradation optimization
-
[1] 周建平, 杨泽艳, 陈观福. 我国高坝建设的现状和面临的挑战[J]. 水利学报, 2006, 37(12): 1433-1438.
(ZHOU Jian-ping, YANG Ze-yan, CHEN Guan-fu.Status and challenges of high dam consructions in China[J]. Journal of Hydraulic Engineering, 2006, 37(12): 1433-1438. (in Chinese))[2] COOKE J B.Concrete-faced rockfill dam[J]. International Water Power & Dam Construction, 1991, 43(1): 11-15. [3] DLT5395—2007碾压式土石坝设计规范[S]. 2007.
(DLT5395—2007 Design specification for rolled earth-rock fill dams[S]. 2007. (in Chinese))[4] DLT 5016—2011混凝土面板堆石坝设计规范[S]. 2011.
(DLT 5016—2011 Design code for concrete face rockfill dams[S]. 2011. (in Chinese))[5] MCDOWELL G R, BOLTON M D, ROBERTSON D.The fractal crushing of granular materials[J]. Journal of the Mechanics and Physics of Solids, 1996, 44(12): 2079-2102. [6] MCDOWELL G R, BOLTON M D.On the micromechanics of crushable aggregates[J]. Géotechnique, 1998, 48(5): 667-679. [7] MCDOWELL G R.On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145. [8] TURCOTTE D L.Fractals and fragmentation[J]. Geophys Res, 1986, 91(B2): 1921-1926. [9] 张季如, 胡泳, 张弼文. 石英砂砾破碎过程中粒径分布的分形行为研究[J]. 岩土工程学报, 2015, 37(5): 784-791.
(ZHANG Ji-ru, HU Yong, ZHANG Bi-wen.Fractal behavior of practical-size distribusion during partical crushing of quartz sand and gravel[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(5): 784-791. (in Chinese))[10] ZHU S, FENG Y M, FENG S R, et al.Particles gradation optimization of blasting rockfill based on fractal theory[J]. Advanced Materials Research, 2011, 366: 469-473. [11] 吴莹, 马刚, 周伟. 基于分形理论的堆石料级配优化研究[J]. 岩土力学, 2016, 37(7): 1977-1985.
(WU Ying, MA Gang, ZHOU Wei.Optimization of gradation of rockfill materials based on the fractal theory[J]. Rock and Soil Mechanics, 2016, 37(7): 1977-1985. (in Chinese))[12] 朱晟, 邓石德, 宁志远. 基于分形理论的堆石料级配设计方法[J]. 岩土工程学报, 2017, 39(6): 1151-1155.
(ZHU Sheng, DENG Shi-de, NING Zhi-yuan, et al.Gradation design method of rockfill materials based on the fractal theory[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6): 1151-1155. (in Chinese))[13] 朱晟, 王永明, 翁厚洋. 粗粒筑坝材料密实度的缩尺效应研究[J]. 岩石力学与工程学报, 2011, 30(2): 348-357.
(ZHU Sheng, WANG Yong-ming, WENG Hou-yang.Study of scale effect of density of coarse-grained dam materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 348-357. (in Chinese))[14] 陈镠芬, 高庄平, 朱俊高, 等. 粗粒土级配及颗粒破碎分形特性[J]. 中南大学学报(自然科学版), 2015(9): 3446-3453.
(CHEN Liu-fen, GAO Zhuang-ping, ZHU Jun-gao, etc. Gradation of coarse grained soil and fractal geometry character of particle breakage[J]. Journal of Central South University (Science and Technology), 2015(9): 3446-3453. (in Chinese))[15] 蔡正银, 李小梅, 关云飞. 堆石料的颗粒破碎规律研究[J]. 岩土工程学报, 2016, 38(5): 923-929.
(CAI Zheng-yin, LI Xiao-mei, GUAN Yun-fei.Particle breakage rules of rockfill materials[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 923-929. (in Chinese))[16] 赵娜, 左永振, 王占彬. 基于分形理论的粗粒料级配缩尺方法研究[J]. 岩土力学, 2016(12): 3513-3519.
(ZHAO Na, ZUO Yong-zhen, WANG Zhan-bin.Grading scale method for coarse-grained soils based on fractal theory[J]. Rock and Soil Mechanics, 2016(12): 3513-3519. (in Chinese))[17] 刘杰. 土石坝渗流控制理论基础及工程经验教训[M]. 北京: 中国水利水电出版社, 2006.
(LIU-Jie.Earth and rockfill dam foundation seepage control theory and engineering experiences and lessons[M]. China Water & Power Press, 2006. (in Chinese))[18] 程展林, 丁红顺. 论堆石料力学试验中的不确定性[J]. 岩土工程学报, 2005, 27(10): 1222-1225.
(CHENG Zhan-lin, DING Hong-shun.Research on indeterminacy of rockfill test result[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1222-1225. (in Chinese)) -
期刊类型引用(26)
1. 于建游,朱颖杰,陈莉颖. 基于LS-GEP的堆石体填充泥浆特性智能预测. 交通科学与工程. 2024(01): 28-35 . 百度学术
2. 吴俊杰,范金勇,曲苓. 深厚覆盖层超高混凝土面板坝堆石体填筑标准的研究与应用. 水利水电技术(中英文). 2024(S1): 301-306 . 百度学术
3. 张志红,王树青,杨凡. 基于Furnas方程和分形理论的级配优化方法及试验验证. 土木工程学报. 2023(01): 109-118 . 百度学术
4. 宋宇,宁志远,刘慧,朱晟. 分区填筑标准对高心墙堆石坝坝体变形协调及安全性影响研究. 中国农村水利水电. 2023(03): 199-207+217 . 百度学术
5. 朱晟,韩朝军,湛正刚,胡永福. 特高心墙堆石坝建设中值得关注的几个问题. 水电与抽水蓄能. 2023(03): 16-21 . 百度学术
6. 朱晟,孙安,杨娱琦,何顺宾,张丹. 特高心墙坝堆石料缩尺试验与变形特性验证分析. 水力发电. 2023(08): 65-71+78 . 百度学术
7. 刘禹杉,孙淼军,吴帅峰,张丽雅,孙黎明. 土石料粒径与级配的图像智能识别研究. 岩土工程学报. 2023(S1): 59-62 . 本站查看
8. 严良平,潘月梁,姜雄彪,陆秋雨,徐畅. 深度图像引导的岩石颗粒分割方法. 应用科技. 2022(02): 87-93 . 百度学术
9. 严红,王永斌. 双粒径填石路基空隙注浆加固结构特征分析. 路基工程. 2022(04): 102-106 . 百度学术
10. 赵宇飞,王毅,亚森·钠斯尔,王文博,路鹏飞,刘彪. 基于多维概率分布的砂砾石坝填料级配研究. 岩土工程学报. 2022(11): 2007-2016 . 本站查看
11. 孙浩,朱东风,金爱兵,尹泽松. 基于不均匀块度分布的崩落矿岩流动特性. 中国有色金属学报. 2022(08): 2433-2445 . 百度学术
12. 王中良,唐婉秋,黄仁龙,杨玉生,赵剑明,吕军. 红鱼洞筑坝堆石料现场碾压及相对密度试验研究. 水利规划与设计. 2021(03): 91-96 . 百度学术
13. 雷雨萌,陈祖煜,于沭,温彦锋,王玉杰,李炎隆. 基于深度阈值卷积模型的土石料级配智能检测方法研究. 水利学报. 2021(03): 369-380 . 百度学术
14. 任彦茹,朱静. 液化土浆料填充大粒径堆石路基结构性能研究. 公路. 2021(05): 85-88 . 百度学术
15. 柳利君,康占军,郑世奇,王建军. 基于CAVF法的混凝土搅拌设备级配自动化控制系统. 自动化技术与应用. 2021(10): 149-152+155 . 百度学术
16. 朱晟. 高面板坝堆石体的填筑质量控制指标研究与应用. 岩土工程学报. 2020(04): 610-615 . 本站查看
17. 陈云敏,马鹏程,唐耀. 土体的本构模型和超重力物理模拟. 力学学报. 2020(04): 901-915 . 百度学术
18. 李康达,杨玉生,柳莹,赵剑明,王龙,齐吉琳. 采砂改变级配砂砾料筑坝压实特性及碾压施工参数研究. 中国水利水电科学研究院学报. 2020(05): 401-407 . 百度学术
19. 朱晟,钟春欣,王京,何顺宾. 高心墙堆石坝填筑标准的试验研究. 岩土工程学报. 2019(03): 561-566 . 本站查看
20. 吴璐璐,何宁,许滨华,李登华,周彦章. 粗颗粒土静力压实特性的试验研究. 河南科学. 2019(04): 603-607 . 百度学术
21. 张鸥,戴寿晔,李晓娜. 不同模型参数对面板堆石坝应力变形的影响研究. 水利水电技术. 2019(04): 95-101 . 百度学术
22. 朱晟,王京,钟春欣,武利强. 堆石料干密度缩尺效应与制样标准研究. 岩石力学与工程学报. 2019(05): 1073-1080 . 百度学术
23. 朱晟,沈凤生. 天然砂砾料的级配特性及包线设计方法. 岩土工程学报. 2019(09): 1738-1744 . 本站查看
24. 朱晟. 连续分布的粗粒土级配方程与压实性能. 岩土工程学报. 2019(10): 1899-1906 . 本站查看
25. 于际都,刘斯宏,王涛,魏浩. 间断级配粗粒土压实特性试验研究. 岩土工程学报. 2019(11): 2142-2148 . 本站查看
26. 于沭,温彦锋,王玉杰,张国英,张延亿,邓刚. 基于图像识别技术的土石料级配检测系统. 中国水利水电科学研究院学报. 2019(06): 439-445 . 百度学术
其他类型引用(10)
计量
- 文章访问数: 456
- HTML全文浏览量: 3
- PDF下载量: 450
- 被引次数: 36