• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

大口径新型顶管力学行为现场试验研究

张耀, 闫治国, 朱合华

张耀, 闫治国, 朱合华. 大口径新型顶管力学行为现场试验研究[J]. 岩土工程学报, 2017, 39(10): 1842-1850. DOI: 10.11779/CJGE201710012
引用本文: 张耀, 闫治国, 朱合华. 大口径新型顶管力学行为现场试验研究[J]. 岩土工程学报, 2017, 39(10): 1842-1850. DOI: 10.11779/CJGE201710012
ZHANG Yao, YAN Zhi-guo, ZHU He-hua. Site-based researches on mechanical behavior of new large-diameter pipes during pipe jacking[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1842-1850. DOI: 10.11779/CJGE201710012
Citation: ZHANG Yao, YAN Zhi-guo, ZHU He-hua. Site-based researches on mechanical behavior of new large-diameter pipes during pipe jacking[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1842-1850. DOI: 10.11779/CJGE201710012

大口径新型顶管力学行为现场试验研究  English Version

详细信息
    作者简介:

    张 耀(1987- ),男,河南新蔡县人,博士研究生,主要从事混凝土材料多尺度力学与建筑结构分析。E-mail: 2011zhangyao@tongji.edu.cn。

    通讯作者:

    闫治国,E-mail:yanzguo@tongji.edu.cn

  • 中图分类号: TU411

Site-based researches on mechanical behavior of new large-diameter pipes during pipe jacking

  • 摘要: 通过对新型预应力钢筒混凝土顶管(JPCCP)开展现场试验,得到了在施工荷载、水土压力等三维荷载作用下顶管各部位的应变时程响应;同时也获得了顶进过程中管-土接触应力时程变化。根据对数据的分析,得出预应力钢筒混凝土顶管具有较大的纵向抗压刚度,而纵向抗拉刚度不足。由于预应力的效应,内层混凝土与中间层混凝土能够承受较大的环向拉应力。通过对管节的纵向受力分析,计算出管-土平均摩阻力随顶进距离的变化规律,结合施工记录得出平均摩阻力随顶进距离先增大后减小,最小值为1.27 kPa;同时,施工顶进间隔越短,平均摩阻力越小。此外,实测结果表明,管-土接触应力对管节运动较为敏感,最大瞬时值可达500 kPa;施工结束后,接触应力沿管周分布并不对称或均匀,但与实测管节环向应变分布对应。
    Abstract: The strain responses of each part of the jacking prestressed concrete cylinder pipe (JPCCP) as well as the pipe-soil pressure under three-dimensional construction loads and water-soil pressure are measured in site. It is shown that the axial compressive stiffness of the JPCCP is large enough to sustain jacking forces. Due to the effects of prestressing, it can bear large tensile stress in the hoop. However, the axial tensile stiffness of the JPCCP is insufficient. Through the force analysis of different pipes in axial direction, the friction force between pipe and soil is figured out, which shows that the shorter the jacking intermittent, the less the average friction force. Otherwise,the pipe-soil pressure is sensitive to pipe motion, and the instantaneous maximum value is 500 kPa. After construction, the distribution of contact stress along the tube is not symmetrical or uniform but coincides with the measured strain of the pipe joint ring.
  • [1] JEFF GRIFFIN, 揣东明. 微型隧道顶管施工技术在美国萨凡纳市的应用[C]// 2009年非开挖技术会议. 广州, 2009. (JEFF GRIFFIN, CHUAI Dong-ming. Micro tunnel pipe jacking construction technology in the United States the application of savannah[C]// Trenchless Technology Conference. Guangzhou, 2009. (in Chinese))
    [2] 熊 欢. 南水北调超大口径PCCP预应力分析模型与试验研究[D]. 北京: 清华大学, 2010. (XIONG Huan. Prestress model and prototype test on the ultra-diameter PCCP in mid-route of south to north water diversion project[D]. Beijing: Tsinghua University, 2010. (in Chinese))
    [3] 胡少伟, 刘晓鑫. PCCP超载破坏试验与破坏机理分析[J]. 水力发电学报, 2012(1): 103-107. (HU Shao-wei, LIU Xiao-xin. Study on bearing capacity test of internal water pressure of super-caliber PCCP[J]. Journal of Hydroelectric Engineering, 2012(1): 103-107. (in Chinese))
    [4] 胡少伟, 沈 捷, 王东黎, 等. 超大口径预存裂缝的预应力钢筒混凝土管结构分析与试验研究[J]. 水利学报, 2010, 41(7): 876-882. (HU Shao-wei, SHEN Jie, LIU Xiao-xin, et al. Overload test and failure mechanism analysis of prestressed concrete cylinder pipe[J]. Journal of Hydraulic Engineering, 2010, 41(7): 876-882. (in Chinese))
    [5] ZARGHAMEE M S, EGGERS D W, OJDROVIC R P. Finite-element modeling of failure of PCCP with broken wires subjected to combined loads[C]// Pipeline Division Specialty Conference. Cleveland, 2002.
    [6] ZARGHAMEE M S, FOK K L. Analysis of prestressed concrete pipe under combined loads[J]. Journal of Structural Engineering, 1990, 116(7): 2022-2039.
    [7] TREMBLAY A W. Combined load testing of prestressed concrete cylinder pipe[C]// Proceedings International Conference on Pipeline Design and Installation, ASCE. Las Vegas, 1990.
    [8] ZHOU Jian-qing. Numerical analysis and laboratory test of concrete jacking pipes[D]. Oxford: University of Oxford, 1998.
    [9] RIPLEY K J. The performance of jacked pipes[D]. Oxford: University of Oxford, 1989.
    [10] NORRIS P. The behavior of jaeked concrete pipes during site installation [D]. Oxford: University of Oxford, 1992.
    [11] MILLIGAN G W E, NORRIS P. Pipe-soil interaction during pipe jacking[J]. Proceedings of the ICE-Geotechnical Engineering, 1999, 137(1): 27-44.
    [12] MILLIGAN G W E, NORRIS P. Site-based research in pipe jacking: objectives, procedures and a case history[J]. Tunnelling and Underground Space Technology, 1996, 11: 3-24.
    [13] 朱合华, 吴江斌, 潘同燕. 曲线顶管的三维力学模型理论分析与应用[J]. 岩土工程学报, 2003(4): 492-495. (ZHU He-hua, WU Jiang-bin, PAN Tong-yan. Theoretical analysis of three-dimensional mechanical model of curved pipe jacking and its application[J]. Chinese Journal of Geotechnical Engineering, 2003(4): 492-495. (in Chinese))
    [14] 魏 纲. 顶管工程土与结构的性状及理论研究[D]. 杭州: 浙江大学, 2005. (WEI Gang. Theoretical study on proprties of soil and structure during pipe jacking consturetion[D]. Hangzhou: Zhejiang University, 2005. (in Chinese))
    [15] 刘 翔, 白海梅, 陈晓晨, 等. 软土中大直径顶管管道受力特性测试[J]. 上海交通大学学报, 2014(11): 1503-1509. (LIU Xiang, BAI Hai-mei, CHEN Xiao-chen, et al. Field test of mechanical properties of large diameter concrete jacking pipe is soft soil[J]. Journal of Shanghai Jiaotong University, 2014(11): 1503-1509. (in Chinese))
    [16] 叶朝良, 高新强, 宋 鹤. 玻璃钢夹砂管管土摩擦系数室内模型试验研究[J]. 石家庄铁道大学学报(自然科学版), 2015(3): 30-34. (YE Chao-liang, GAO Xin-qiang, SONG He. Applied research of ground penetrating radar technology in concrete cavity detection[J]. Journal of Shijiazhuang Tiedao University, 2015(3): 30-34. (in Chinese))
    [17] 陈建中, 李卓球. 外径尺寸偏差对玻璃钢夹砂顶管顶力影响分析[J]. 华中科技大学学报(城市科学版), 2005(2): 48-51. (CHEN Jian-zhong, LI Zhou-qiu. Research on the resistant of lightweight aggregate concrete to water penetration[J]. Journal of HUST, 2005(2): 48-51. (in Chinese))
    [18] 陈建中, 李卓球, 徐 鹏. 大口径长距离玻璃钢顶管的设计与应用[J]. 中国给水排水, 2013, 18: 154-157. (CHEN Jian-zhong, LI Zhou-qiu, XU Peng. Design and application of large diameter grp jacking pipe in long distance pipe jacking construction[J]. China Water & Waste Water, 2013, 18: 154-157. (in Chinese))
    [19] 李卓球, 陈建中, 杨 粤. 大口径玻璃钢夹砂管的顶力分析与应用[J]. 中国给水排水, 2005(5): 98-100. (LI Zhou-qiu, CHEN Jian-zhong, YANG Yue. Analysis on jacking force of g lass reinforced plastic mortar pipe with heavy caliber and its application[J]. China Water & Wastewater, 2005(5): 98-100. (in Chinese))
    [20] CECS140—2002给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程[S]. 北京: 中国计划出版社, 2002. (CECS140—2002 Specification for structural design of buried prestressed concrete pipeline of water supply and sewerage engineering[S]. Beijing: China Planning Press, 2002. (in Chinese))
    [21] CECS 246—2008给水排水工程顶管技术规程[S]. 北京:中国计划出版社, 2008. (CECS 246—2008 Technical specification for pipe jacking of water supply and sewerage engineering[S]. Beijing: China Planning Press, 2008. (in Chinese))
    [22] GB 50332—2002给水排水工程管道结构设计规范[S]. 北京: 中国建筑工业出版社, 2002. (GB 50332—2002 Structural design code for pipelines of water supply and waste water engineering[S]. Beijing: China Architecture & Building Press, 2002. (in Chinese))
    [23] GB 50010—2010混凝土结构设计规范[S]. (GB 50010—2010 Code for design of concrete structures[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese))
    [24] 雷 晗. 大直径砼顶管工程中土与结构的相互作用分析[D]. 上海: 上海交通大学, 2012. (LEI Han. Study on Soil-Structure interaction during large diameter concrete pipe jacking[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese))
  • 期刊类型引用(13)

    1. 章青,刘攀勇,顾鑫,乔延赫. 土壤干缩开裂和卷曲分析的数值模型与若干进展Ⅰ:基本方程与网格类数值方法. 水利学报. 2025(01): 42-55 . 百度学术
    2. 郭鸿,鲁玉妍,李文阳,邹虎金,张彤川,黄芙蓉. 生态纤维改良砂质黏土干缩裂隙试验研究. 水利水运工程学报. 2025(02): 121-127 . 百度学术
    3. 孙海波,丁佳祺,邓云鹏,吕亚歌,高海彦. 黏土内部边界与含水率下限对干缩裂隙的影响. 科技通报. 2024(05): 65-72 . 百度学术
    4. 邓云鹏,彭镝,董梅,徐日庆,傅榆涵. 考虑毛细与吸附作用的黏土干缩开裂过程离散元模拟. 岩土工程学报. 2024(08): 1703-1711 . 本站查看
    5. 冀文雅,李甜,徐向舟,李依杭,郭胜利. 基于稀土元素示踪技术的库岸崩滑土体堆积特征研究. 水资源与水工程学报. 2024(05): 164-171+180 . 百度学术
    6. 章君政,唐朝生,巩学鹏,周启友,程青,吕超,施斌. 基于高密度电阻率法的土体干缩裂隙动态发育过程精细监测研究. 岩土力学. 2023(02): 392-402 . 百度学术
    7. 牟文,唐朝生,程青,田本刚,刘伟杰,胡慧聪,施斌. 裂隙对土体水分蒸发过程的影响. 岩土工程学报. 2023(12): 2641-2648 . 本站查看
    8. 刘瑞琪,雷学文,万勇,刘磊. 含水率梯度作用下填埋场压实黏土层开裂特性试验与机理分析. 力学与实践. 2022(01): 12-21 . 百度学术
    9. 岳建伟,李嘉乐,王思远,陈颖,邢旋旋,杨雪. 定远营遗址稳定性和微观劣化的研究. 科学技术与工程. 2021(10): 4159-4166 . 百度学术
    10. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 . 百度学术
    11. 黎柳坤. 水库土石坝填土料冻融交替下UU试验力学特征影响分析研究. 水利科学与寒区工程. 2021(04): 50-55 . 百度学术
    12. 王明俊,王朋,柯树炜. 基础沉降对钢型井架承载力及稳定性的影响规律研究. 城市住宅. 2021(09): 193-195+198 . 百度学术
    13. 唐朝生. 极端气候工程地质:干旱灾害及对策研究进展. 科学通报. 2020(27): 3009-3027+3008 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 25
出版历程
  • 收稿日期:  2016-08-04
  • 发布日期:  2017-10-24

目录

    /

    返回文章
    返回