[1] |
TRIFUNAC M D. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves[J]. Bull Seism Soc Am, 1971, 61: 1755-1770.
|
[2] |
YUAN X M, LIAO Z P. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section[J]. Earthquake Eng Struct Dyn, 1995, 24(10): 1303-1313.
|
[3] |
梁建文, 张秋红, 李方杰. 浅圆沉积谷地对瑞雷波的散射—高频解[J]. 地震学报, 2006, 28(2): 176-182. (LIANG Jian-wen, ZHANG Qiu-hong, LI Fang-jie. Scattering of Rayleigh waves by a shallow circular alluvial valley: high-frequency solution[J]. Acta Seismologica Sinica, 2006, 28(2): 176-182. (in Chinese))
|
[4] |
赵成刚, 韩 铮. 半球形饱和土沉积谷场地对入射平面 Rayleigh 波的三维散射问题的解析解[J]. 地球物理学报, 2007, 50(3): 905-914. (ZHAO Cheng-gang, HAN Zheng. Three-dimensional scattering and diffraction of plane Rayleigh-waves by a hemispherical alluvial valley with saturated soil deposit[J]. Chinese J Geophys, 2007, 50(3): 905-914. (in Chinese))
|
[5] |
周国良, 李小军, 侯春林, 等. SV 波入射下河谷地形地震动分布特征分析[J]. 岩土力学, 2012, 33(4): 1161-1166. (ZHOU Guo-liang, LI Xiao-jun, HOU Chun-lin, et al. Characteristic analysis of ground motions of canyon topography under incident SV seismic waves[J]. Rock and Soil Mechanics, 2012, 33(4): 1161-1166. (in Chinese))
|
[6] |
BAO H, BIELAK J, GHATTAS O, et al. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 152(1): 85-102.
|
[7] |
丁海平, 刘启方, 金 星. 长周期地震动三维有限元数值模拟方法[J]. 地震工程与工程振动, 2006, 26(5): 27-31. (DING Hai-ping, LIU Qi-fang, JIN Xing. A method of numerical simulation for long-period strong ground motion by3-D FEM[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(5): 27-31. (in Chinese))
|
[8] |
陈国兴, 金丹丹, 朱 姣, 等. 河口盆地非线性地震效应及设计地震动参数[J]. 岩土力学, 2015, 36(6): 1721-1736. (CHEN Guo-xing, JIN Dan-dan, ZHU Jiao, et al. Nonlinear seismic response of estuarine basin and design parameters of ground motion[J]. Rock and Soil Mechanics, 2015, 36(6): 1721-1736. (in Chinese))
|
[9] |
FRANKEL A, VIDALE J. A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock[J]. Bull Seism Soc Am, 1992(5): 2045-2074.
|
[10] |
付长华, 高孟潭, 陈 鲲. 北京盆地结构对长周期地震动反应谱的影响[J]. 地震学报, 2012, 34(3): 374-382. (FU Chang-hua, GAO Meng-tan, CHEN Kun. A study on long-period response spectrum of ground motion affected by basin structure of Beijing[J]. Acta Seismologica Sinica, 2012, 34(3): 374-382. (in Chinese))
|
[11] |
SANCHEZ-SESMA F J, LUZON F, PEREZ-RUIZ J A. In-plane seismic response of inhomogeneous alluvial valleys with vertical gradients of velocities and constant Poisson ratio[J]. Soil Dyn Earthquake Eng, 2009, 29: 994-1004.
|
[12] |
巴振宁, 梁建文. Rayleigh波斜入射下层状场地中凸起地形的三维响应分析[J]. 中国科学:技术科学, 2015, 45(8): 874-888. (BA Zhen-ning, LIANG Jian-wen. Three dimensional responses of a hill in a layered half-space for obliquely incident Rayleigh waves[J]. Science China Technological Sciences, 2015, 45: 874-888. (in Chinese))
|
[13] |
刘中宪, 梁建文, 赵瑞斌. 流体饱和层状半空间中沉积谷地对地震波的散射—IBIEM 求解[J]. 岩土工程学报, 2013, 35(3): 512-522. (LIU Zhong-xian, LIANG Jian-wen, ZHAO Rui-bin. Indirect boundary integral equation method for solving scattering of seismic waves by an alluvial valley in fluid poroelastic layered half-space[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 512-522. (in Chinese))
|
[14] |
MOSSESSIAN T K, DRAVINSKI M. Amplification of elastic waves by a three dimensional valley. Part 1: steady state response[J]. Earthquake Eng Struct Dyn, 1990, 19: 667-680.
|
[15] |
金 峰, 张楚汉, 王光纶. 结构地基相互作用的 FE-BE-IBE 耦合模型[J]. 清华大学学报 (自然科学版), 1993, 33(2): 17-25. (JIN Feng, ZHANG Chu-han, WANG Guang-lun. A Coupling FE-BE-IBE model for structure- foundation interactions[J]. Journal of Tsinghua University (Natural Science), 1993, 33(2): 17-25. (in Chinese))
|
[16] |
MOSSESSIAN T K, DRAVINSKI M. A hybrid approach for scattering of elastic waves by three-dimensional irregularities of arbitrary shape[J]. J Phys Earth, 1992, 40: 241-261.
|
[17] |
LYSMER J, KULEMEYER R L. Finite dynamic model for infinite media[J]. J Engng Mech Div ASCE, 1969, 95: 759-877.
|
[18] |
刘晶波, 王振宇, 杜修力, 等. 波动问题中的三维时域 黏弹性人工边界[J]. 工程力学, 2005, 22(6): 46-51. (LIU Jing-bo, WANG Zhen-yu, DU Xiu-li, et al. Three- dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanic, 2005, 22(6): 46-51. (in Chinese))
|
[19] |
廖振鹏. 工程波动理论导论[M]. 2版. 北京: 科学出版社, 2002. (LIAO Zhen-peng. Introduction to wave motion theories in engineering[M]. 2nd ed. Beijing: Science Press, 2002. (in Chinese))
|
[20] |
CLAYTON R, ENGQUIST B. Absorbing boundary condition for acoustic and elastic equations[J]. Bull Seism Soc Am, 1977, 67: 1529-1540 .
|
[21] |
WOLF J P. Dynamic soil-structure interaction[M]. New Jersey: Prentice Hall, 1985.
|
[22] |
梁建文, 巴振宁. 三维层状场地中斜面均布荷载动力格林函数[J]. 地震工程与工程振动, 2007, 27(5): 18-26. (LIANG Jian-wen, BA Zhen-ning. Dynamic Green’s function for uniformly distributed loads acting on an inclined plane in 3-D layered site[J]. Journal of Earthquake Engineering and Engineering Vibration, 2007, 27(5): 18-26. (in Chinese))
|
[23] |
刘中宪, 梁建文. 三维黏弹性层状半空间埋置集中荷载动力格林函数求解—修正刚度矩阵法[J]. 固体力学学报, 2013, 34(6): 579-588. (LIU Zhong-xian, LIANG Jian-wen. Dynamic Green’s function for three-dimensional concentrated loads in the interior of viscoelastic layered half-space—Modified Stiffness Matrix Method[J]. Chinese Journal of Solid Mechanics, 2013, 34(6): 579-588. (in Chinese))
|
[24] |
SÁNCHEZ-SESMA F J. Diffraction of elastic waves by three-dimensional surface irregularities[J]. Bull Seism Soc Am, 1983, 73(6A): 1621-1636.
|
[25] |
廖振鹏, 杨柏坡, 袁一凡. 三维地形对地震地面运动的影响[J]. 地震工程与工程震动, 1980(1): 13-33. (LIAO Zhen-peng, YANG Bai-po, YUAN Yi-fan. Effect of three- dimensional topography on earthquake ground motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 1980(1): 13-33. ( in Chinese))
|