Reliability of Chinese dynamic penetration test for liquefaction evaluation of gravelly soils
-
摘要: 动力触探是针对砾性土力学性能评价的一种原位测试技术,具有设备简单、操作方便等优势。分别在成都平原和美国Utah地区选取典型砾性土场地,进行中美联合动力触探和有效锤击能量的测试与标定,结果表明:①在成都平原3个砾性土场地获取了中国超重型动力触探1321个重锤锤击能量记录,锤击能量传递系数的平均值约为90%,标准差为7.7%,锤击数离散性受设备操作方法的影响较大;②在美国钻机上安装中国超重型动力触探标准探头,可以有效穿透选取的试验深度为20 m的砾性土场地,并进行分层、力学性能评价;③在美国Echo dam下游坝基上2个砾性土场地获取了美国动力触探1438个重锤锤击记录,锤击能量传递系数约为74%,标准差为8.7%,锤击数离散性受拉绳、钻杆摩擦力的影响较大;④对锤击数进行能量修正之后,以2008年汶川地震砾性土液化为背景、以动力触探锤击数为基本指标的砾性土液化判别方法,具有国际通用的可行性。Abstract: Chinese Dynamic penetration test (DPT) is an in-situ testing with the advantages of simple apparatus, economical test, and continuous data acquisition, especially for measuring bearing capacity, relative density and classification of gravelly soils. The typical gravelly soils sites are selected from the Chengdu Plain in China and the river bed of Echo dam downstream in the U.S., and China-US dynamic penetration testing and hammer energy measurements are conducted. The results show that: (1) The average of energy transfer ratios is 90% and the standard deviation is 7.7%, derived from 1321 energy time-history records, tested at 3 gravelly soils sites in the Chengdu Plain. The deviation is greatly affected by operation procedure. (2) The DPT test depth, using US drill rig assembling with Chinese DPT cone, can reach as much as 20 meters for assessing soil properties. (3) The average of energy transfer ratios is around 74% and the standard deviation is 8.7%, derived from 1438 energy time-history records, tested at 2 gravelly soils sites on the river bed of Echo dam downstream. The deviation is greatly affected by friction of drill rod and rope. (4) The DPT blows should be corrected according to different hammer energies. The proposed evaluation method for gravelly soils liquefaction, developed from the DPT database of gravelly soils liquefied during 2008 Wenchuan Earthquake, can be applicable for worldwide use.
-
[1] 地球科学大词典编委会. 地球科学大词典[M]. 北京: 地质出版社, 2005. (Earth Science Dictionary Committee. Earth science dictionary[M]. Beijing: Geological Publishing House, 2005. (in Chinese)) [2] 曹振中, 徐学燕, 袁晓铭. 国内外液化砂砾土土性对比分析[J]. 防灾减灾工程学报, 2012, 32(4): 481-487. (CAO Zhen-zhong, XU Xue-yan, YUAN Xiao-ming. Characteristics comparison of gravels that liquefied following the 2008 wenchuan and previous earthquakes[J]. J. of Disaster Prevention and Mitigation Engeneering, 2012, 32(4): 481-487. (in Chinese)) [3] CAO Z, YOUD T L, YUAN X. Gravelly soils that liquefied during 2008 Wenchuan, China earthquake, Ms=8.0[J]. Soil Dynamics and Earthquake Engineering, Elsevier, 2011(31): 1132-1143. [4] TSUCHIDA H. Prediction and countermeasure against the liquefaction in sand deposits[C]// Seminar in the Port and Harbor Research Institute. Yokosuka: 1970: 1-33. [5] 汪闻韶, 常亚屏, 左秀泓. 饱和砂砾料在振动和往返加荷下的液化特性[C]// 水利水电科学研究院论文集(第23集). 北京: 水利出版社, 1986: 195-203. (WANG Wen-shao, CHANG Ya-ping, ZOU Xiu-hong. Liquefaction characteristics of saturated sand-gravels under vibration and cyclic loading[C]// Volume 23 collected papers of China Institute of Water Resources and Hydropower Research. Beijing: China Waterpower Press, 1986: 195-203. (in Chinese)) [6] KAZAMA M, SENTO N, OMURA H, et al. Liquefaction and settlement of reclaimed ground with gravelly decomposed granite soil[J]. Soil Foundation, 2003, 43(3): 57-72. [7] EVANS Mark D, ZHOU Sheng-ping. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298. [8] WONG R T, SEED H B, CHAN C K. Liquefaction of gravelly soils under cyclic loading conditions[R]. California: University of California, 1974. [9] SIDDIQI F H. Strength evaluation of cohesionless soils with oversized particles[D]. Davis: University of California at Davis, 1984. [10] KOKUSHO T, TANAKA Y. Dynamic properties of gravel layers investigated by in- situ freezing sampling[C]// Geotech Spec Publ No56. NewYork: ASCE, 1994: 121-140. [11] KOKUSHO T, HARA T, HIRAOKA R. Undrained shear strength of granular soils with different particle gradations[J]. J Geotechnical and Geoenvironment Engineering, 2004, 130(6): 621-629. [12] 袁晓铭, 曹振中. 砂砾土液化判别的基本方法及计算公式[J]. 岩土工程学报, 2011, 33(4): 509-519. (YUAN X, CAO Z. Fundamental method and formula for evaluation of liquefaction of gravel soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 509-519. (in Chinese)) [13] CAO Z, YOUD T, YUAN X. Chinese dynamic penetration test for liquefaction evaluation in gravelly soils[J]. J of Geotechnical and Geoenvironmental Engineering, ASCE, 2013, 139(8): 1320-1333. [14] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833. [15] YOUD T L, IDRISS I M, ANDRUS R D, et al. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(10): 817-833. -
期刊类型引用(34)
1. 肖瑶,邓华锋,李建林,熊雨,程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果. 材料导报. 2024(01): 209-215 . 百度学术
2. 熊雨,肖瑶,邓华锋,李建林,黄叶宁,朱文羲. 海水环境下混凝土裂缝微生物改性修复研究. 应用基础与工程科学学报. 2024(01): 160-177 . 百度学术
3. 谢永晟,杨果岳,王阳,杨少光. 剪切速率对水泥胶结钙质砂强度及变形的影响. 湘潭大学学报(自然科学版). 2024(01): 83-91 . 百度学术
4. 王双娇,李志清,田怡帆,李燕明,周应新,李丹丹. 微生物岩土工程技术的过去、现在与未来. 工程地质学报. 2024(01): 236-264 . 百度学术
5. 张永杰,欧阳健,黄万东,刘涛,朱剑锋,陈剑华. 胶结液浓度对微生物固化花岗岩残积土强度特性的影响规律. 湖南大学学报(自然科学版). 2024(03): 121-129 . 百度学术
6. 陈洪运,张尧,温琪. 微生物矿化加固砂土的试验研究. 河北建筑工程学院学报. 2024(01): 8-13 . 百度学术
7. 徐洪钟,王沐婉,沐红元,米健,吴永红. 微生物诱导碳酸钙沉积加固剧烈砂化白云岩实验研究. 清华大学学报(自然科学版). 2024(07): 1168-1178 . 百度学术
8. Yingxin Zhou,Zhiqing Li,Peng Zhang,Qi Wang,Weilin Pan,Shuangjiao Wang,Xiongyao Xie. Research status, hot spots, difficulties and future development direction of microbial geoengineering. Journal of Road Engineering. 2024(02): 234-255 . 必应学术
9. 王延宁,黄龙剑,陈前,俞缙,刘士雨. MICP加固花岗岩残积土的渗透特性. 土木与环境工程学报(中英文). 2024(05): 38-46 . 百度学术
10. 林文彬,王彬,高玉朋,柯劲涛,曹生根,孔秋平. 海水环境下微生物诱导碳酸钙沉淀胶结散体状强风化花岗岩崩解试验研究. 工业建筑. 2024(09): 1-9 . 百度学术
11. 林文彬,高玉朋,罗承浩,林威,郭琼玲. 天然海水环境MICP固化硅质海砂模型试验研究. 地下空间与工程学报. 2024(06): 1960-1968+2009 . 百度学术
12. 谭慧明,赵祥运,徐烨. 豆皮脲酶诱导碳酸盐沉淀固化砂土抗风蚀性能试验研究. 防灾减灾工程学报. 2024(06): 1408-1417+1427 . 百度学术
13. 李雨杰,国振,李艺隆,芮圣洁,朱永强. 岛礁工程MICP加固技术研究进展. 工程科学学报. 2023(05): 819-832 . 百度学术
14. 王延宁,黄龙剑,李思侃,吴鸣. 一种估算MICP加固砂土体渗透系数的简便方法. 汕头大学学报(自然科学版). 2023(01): 3-12+2 . 百度学术
15. 汤佳辉,彭劼,许鹏旭,卫仁杰,李亮亮. MICP加固钙质砂的耐久性试验研究. 河北工程大学学报(自然科学版). 2023(01): 29-34 . 百度学术
16. 章君政,唐朝生,周启友,吕超,泮晓华,施斌. 基于ERT技术的微生物矿化固砂过程监测研究. 防灾减灾工程学报. 2023(02): 351-358 . 百度学术
17. 艾峰全. 不同制备工艺下微生物水泥固结不同砂质效果分析. 人民长江. 2023(06): 194-199 . 百度学术
18. 陈垚,王重卿,江世雄,罗立津,李熙,陈鸿,郑军荣,贾纬. 微生物矿化对塔基弃土的固结作用及抗降雨侵蚀效果. 科学技术与工程. 2023(34): 14713-14720 . 百度学术
19. 郑思维,胡明鉴,霍玉龙,黎宇. 盐溶液环境下钙质砂渗透性影响因素分析. 岩土力学. 2023(12): 3522-3530 . 百度学术
20. 耿闻继,陈爱青,闻艺杰,许怀华,薛润泽,朱瑞莹,韩培培. 微生物矿化技术在混凝土既有微裂缝修复中的研究进展. 水道港口. 2023(06): 938-948 . 百度学术
21. 刘津江,王淼,樊敏,刘西周. 产脲酶微生物的筛选和应用研究进展. 生物技术. 2022(01): 107-113+119 . 百度学术
22. 肖瑶,邓华锋,李建林,程雷,朱文羲. 海水环境下巴氏芽孢杆菌驯化及钙质砂固化效果研究. 岩土力学. 2022(02): 395-404 . 百度学术
23. 王子玉,喻文晔,齐超楠,赵翔宇. 海水环境下MICP的反应机理与影响因素. 土木与环境工程学报(中英文). 2022(05): 128-135 . 百度学术
24. 许鹏旭,冷勐,彭劼,卫仁杰. 微生物与水泥固化南海珊瑚砂的强度及微观特征对比试验. 科学技术与工程. 2022(16): 6642-6649 . 百度学术
25. 曾召田,梁珍,孙凌云,付慧丽,范理云,潘斌,于海浩. 水泥胶结钙质砂导热系数的影响因素试验研究. 岩土力学. 2022(S1): 88-96 . 百度学术
26. 李艺隆,国振,徐强,李雨杰. 海水环境下MICP胶结钙质砂干湿循环试验研究. 浙江大学学报(工学版). 2022(09): 1740-1749 . 百度学术
27. 许万强,林文彬,罗承浩,姜乃灿,高玉朋,林威,吴文葶. MICP技术研究进展及在海洋岩土工程的应用展望. 福建工程学院学报. 2022(06): 511-519 . 百度学术
28. 刘家明,童华炜,赵寄橦,袁杰. 盐溶液环境下微生物固化技术加固钙质砂的试验研究. 科学技术与工程. 2021(12): 5046-5053 . 百度学术
29. 中国路基工程学术研究综述·2021. 中国公路学报. 2021(03): 1-49 . 百度学术
30. 董博文,刘士雨,俞缙,蔡燕燕,涂兵雄. 靶向激活产脲酶微生物加固钙质砂试验研究. 岩土工程学报. 2021(07): 1315-1321 . 本站查看
31. 曾召田,付慧丽,吕海波,梁珍,于海浩. 水泥胶结钙质砂热传导特性及微观机制. 岩土工程学报. 2021(12): 2330-2338 . 本站查看
32. 唐朝生,泮晓华,吕超,董志浩,刘博,王殿龙,李昊,程瑶佳,施斌. 微生物地质工程技术及其应用. 高校地质学报. 2021(06): 625-654 . 百度学术
33. 周应征,管大为,成亮. 微生物诱导碳酸盐在土体加固中的应用进展. 高校地质学报. 2021(06): 697-706 . 百度学术
34. 曹光辉,刘士雨,俞缙,蔡燕燕,胡洲,毛坤海. 酶诱导碳酸钙沉淀(EICP)技术及其在岩土工程中的应用. 高校地质学报. 2021(06): 754-768 . 百度学术
其他类型引用(18)
计量
- 文章访问数:
- HTML全文浏览量: 0
- PDF下载量:
- 被引次数: 52