• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

不同沉积方向各向异性结构性砂土离散元力学特性分析

蒋明镜, 付昌, 刘静德, 张伏光

蒋明镜, 付昌, 刘静德, 张伏光. 不同沉积方向各向异性结构性砂土离散元力学特性分析[J]. 岩土工程学报, 2016, 38(1): 138-146. DOI: 10.11779/CJGE201601015
引用本文: 蒋明镜, 付昌, 刘静德, 张伏光. 不同沉积方向各向异性结构性砂土离散元力学特性分析[J]. 岩土工程学报, 2016, 38(1): 138-146. DOI: 10.11779/CJGE201601015
JIANG Ming-jing, FU Chang, LIU Jing-de, ZHANG Fu-guang. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. DOI: 10.11779/CJGE201601015
Citation: JIANG Ming-jing, FU Chang, LIU Jing-de, ZHANG Fu-guang. DEM simulations of anisotropic structured sand with different deposit directions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 138-146. DOI: 10.11779/CJGE201601015

不同沉积方向各向异性结构性砂土离散元力学特性分析  English Version

基金项目: 国家杰出青年科学基金项目(51025932); 教育部博士点基金项目(20100072110048); 国家防灾减灾重点实验室项目(SLDRCE14-A-04)
详细信息
    作者简介:

    蒋明镜(1965- ),男,教授,博士生导师,主要从事天然结构性黏土、砂土、太空土、深海能源土、非饱和土的宏、微观之试验、本构模型和数值分析方面的研究以及土体逐渐破坏分析。

DEM simulations of anisotropic structured sand with different deposit directions

  • 摘要: 为探究沉积方向对各向异性结构性砂土力学特性的影响,首先采用椭圆颗粒生成两种不同沉积方向(水平与竖直)的各向异性净砂样,其次,引入一个考虑胶结厚度影响的微观胶接触模型从而生成各向异性结构性砂土。最后,对两种各向异性结构性砂土试样进行双轴压缩试验,并将水平沉积试样试验结果与室内试验结果对比验证该模型的可行性。同时,将两种不同方向试样的试验结果进行对比以探究沉积方向的影响。结果表明:两种试样应力-应变关系均呈软化及剪胀现象,水平沉积试样峰值偏应力较竖直沉积试样大,而二者残余阶段偏应力无明显差别;水平沉积试样临界孔隙比较竖直沉积试样大;胶结破坏速率及胶结破坏率变化与宏观力学特性变化相对应,且变化规律基本相同;水平方向沉积试样的胶结接触主方向始终保持竖直而竖直沉积试样的胶结接触主方向始终保持水平;在水平沉积试样中始终为水平分布颗粒长轴分布主方向,而竖直沉积试样中颗粒长轴逐渐向各向同性分布靠近。
    Abstract: In order to study the effects of deposit directions on the mechanical response of anisotropic structured sand, two anisotropic pure sand samples deposited in horizontal and vertical directions are prepared by using elliptical particles in NS2D first, and then a bond contact model considering the bond thickness is implemented into the pure anisotropic sand samples to prepare anisotropic structured sand samples. Biaxial compression tests are conducted on both samples, and the results of samples with horizontal deposit direction are compared with the laboratory test results to validate this model, then the results of two samples with different deposit directions are compared to study the effect of depositing direction. Test results show that strain softening and shear dilation occur in both samples. The peak deviator stress of the horizontal deposited sample is larger than that of the vertical deposited sample, while the residual shear forces are nearly the same. Besides, the critical void ratio of the horizontal deposited sample is larger than that of the vertical deposited sample. The changes of bond breakage percentage and bond breakage ratio of these two samples are of the same and are consistent with the stress-strain and volumetric mechanical responses. The number of bond contacts decreases in the two samples, and the bond contacts distribute in a vertical principal direction in the horizontal deposited sample and a horizontal principal direction in the vertical deposited sample during the tests. The principal direction of particle orientation is horizontal for the horizontal deposited sample throughout the tests, while the principal direction of particle orientation in the vertical deposited sample is firstly vertical and then develops towards an isotropy state.
  • [1] CASAGRANDE A, CARILLO N. Shear failure of anisotropic materials[J]. Proceedings of Boston Society of Civil Engineers, 1944, 31(4): 74-81.
    [2] ARTHUR J, MENZIES B K. Inherent anisotropy in a sand[J]. Géotechnique, 1972, 22(1): 115-128.
    [3] 童朝霞, 周少鹏, 姚仰平, 等. 测定各向异性砂土抗剪强度特性的新型直剪装置及初步应用[J]. 岩石力学与工程学报. 2012, 31(12): 2579-2584. (TONG Zhao-xia, ZHOU Shao-ping, YAO Yang-ping, et al. An improved direct shear apparatus for shear strength of anisotropic sand and its primary application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2579-2584. (in Chinese))
    [4] WANG Y H, LEUNG S C. A particulate-scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1): 29-44.
    [5] 王绪民, 赵 灿, 陈善雄, 等. 人工胶结砂物理力学特性试验研究[J]. 岩土力学, 2013, 34(11): 3134-3140. (WANG Xu-min, ZHAO Can, CHEN Shan-xiong, et al. Experimental study of physico-mechanical properties of artificially cemented sand[J]. Rock and Soil Mechanics, 2013, 34(11): 3134-3140. (in Chinese))
    [6] 陈立平, 张顶立, 房 倩, 等. 基于细管统计的各向异性砂土摩擦特性与破坏机制研究[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3291-3298. (CHEN Li-ping, ZHANG Ding-li, FANG Qian, et al. Research on fabric characteristics and failure mechanism of anisotropic sand based on micro-statistic[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3291-3298. (in Chinese))
    [7] CUNDALL P A, STRACK O L. A discrete numerical model for granular assemblies [J]. Géotechnique, 1979, 29: 47-65.
    [8] 史旦达, 周 健, 刘文白, 等. 砂土单调剪切特性的非圆颗粒模拟[J]. 岩土工程学报, 2008, 30(9): 1361-1366. (SHI Dan-da, ZHOU Jian, LIU Wen-bai, et al. Numerical simulation for behaviors of sand with non-circular particles under monotonic shear loading[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1361-1366. (in Chinese))
    [9] JIANG M J, SUN Y G, LI L Q, et al. Contact behavior of idealized granules bonded in two different interparticle distances: An experimental investigation[J]. Mechanics of Materials, 2012, 55: 1-15.
    [10] 蒋明镜, 孙渝刚. 人工胶结砂土力学特性的离散元模拟[J]. 岩土力学, 2011, 32(6): 1849-1856. (JIANG Ming-jing, SUN Yu-gang. A DEM modelling of mechanical behavior of artificially cemented sand[J]. Mechanics of Materials, 2011, 32(6): 1849-1856. (in Chinese))
    [11] JIANG M J, SUN Y G, XIAO Y. An experimental investigation on the mechanical behavior between cemented granules[J]. Geotechnical Testing Journal, 2012, 35(5): 678-690.
    [12] 蒋明镜, 孙渝刚, 李立青. 复杂应力下两种胶结颗粒微观力学模型的试验研究[J]. 岩土工程学报, 2011, 33(3): 354-360. (JIANG Ming-jing, SUN Yu-gang, LI Li-qing. Experimental study on micro-mechanical model for two different bonded granules under complex stress conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3): 354-360. (in Chinese))
    [13] 蒋明镜, 孙渝刚, 李立青. 胶结颗粒接触力学特性测试装置研制[J]. 岩土力学, 2011, 32(1): 309-315. (JIANG Ming-jing, SUN Yu-gang, LI Li-qing. Development of experimental apparatus for contact behavior of bonded granules[J]. Rock and Soil Mechanics, 2011, 32(1): 309-315. (in Chinese))
    [14] 蒋明镜, 周雅萍, 陈 贺. 不同胶结厚度下粒间胶结力学特性的试验研究[J]. 岩土力学, 2013, 34(5): 1264-1273. (JIANG Ming-jing, ZHOU Ya-ping, CHEN He. Experimental study of mechanical behaviors of bonded granules under different bond thicknesses[J]. Rock and Soil Mechanics, 2013, 34(5): 1264-1273. (in Chinese))
    [15] JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
    [16] 李立青, 蒋明镜, 吴晓峰. 椭圆形颗粒堆积体模拟颗粒材料力学性能的离散元数值方法[J]. 岩土力学, 2011, 32(增刊1): 713-718. (LI Li-qing, JIANG Ming-jing, WU Xiao-feng. A developed discrete element model NS2D for simulating mechanical properties of elliptical particles assemblages[J]. Rock and Soil Mechanics, 2011, 32(S1): 713-718. (in Chinese))
    [17] 蒋明镜, 刘静德. 结构性砂土胶结厚度分布特性试验研究[J]. 地下空间与工程学报(已录用). (JIANG Ming-jing, LIU Jing-de. Experimental and numerical research on bonding properties of structured sand[J]. Chinese Journal of Underground Space and Engineering (Accepted). (in Chinese))
    [18] JIANG M J, FU C, SHEN Z F, et al. DEM simulations of methane hydrate dissociation by thermal recovery[C]// Proceedings of International Symposium on Geomechanics from Micro to Macro. UK, 2014: 379-384.
    [19] AJORLOO A M, MROUEH H, LANCELOT L. Experimental investigation of cement treated sand behavior under triaxial test[J]. Geotechnical and Geological Engineering , 2012, 30: 129-143.
计量
  • 文章访问数:  453
  • HTML全文浏览量:  5
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-06
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回