• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于弹塑性土体本构模型的滑坡运动过程SPH模拟

胡嫚, 谢谟文, 王立伟

胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005
引用本文: 胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005
HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005
Citation: HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. DOI: 10.11779/CJGE201601005

基于弹塑性土体本构模型的滑坡运动过程SPH模拟  English Version

详细信息
    作者简介:

    胡 嫚(1988- ),女,讲师,主要从事岩土工程数值模拟等方面的研究。

SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model

  • 摘要: 滑坡的仿真模拟是分析滑坡运动过程并预测滑坡影响范围的重要手段之一。采用了基于岩土体弹塑性本构模型的光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)方法,模拟滑坡失稳后岩土材料的特性。该模型以经典弹塑性理论为基础,包含了线弹性变形和德鲁克-普拉格(Drucker-Prager,DP)屈服准则下非关联流动法则的塑性变形,由于考虑了岩土材料的塑性特征,该方法能够更加精确和真实地模拟滑坡运动过程。同时,结合地理信息系统(geographic information system,GIS)的数据管理与建模,进一步将该SPH模型应用到滑坡模拟的实例中。基于GIS平台,完成了能够自动生成计算模拟所需的滑坡粒子数据的C#程序。该程序同时生成了高精度的滑坡体实粒子和复杂、不规则的边界虚粒子。实现了一系列模型建模与模拟计算,并验证了该方法的精度,还将此模型与方法应用在汶川地震中引发的大光包滑坡实例中,模拟结果与现场收集数据十分符合。
    Abstract: Modeling of post-failure flow of landslides is one of the important approaches that can be used to simulate landslide flow development and predict the landslide hazard zone. A Smoothed particle hydrodynamics (SPH) model based on the constitution of elastic-plastic constitutive mechanics for soil is developed for simulating the behavior of a class of geo-materials. The SPH soil model considers the plastic behavior of the materials, and hence it is very important for more accurate and realistic simulations of geo-materials of soil type. The implemented material laws in the SPH soil code include classical elastic-plasticity with a linear elastic part, and different applicable yield surfaces with non-associated flow rules. In order to apply the SPH method to actual landslide modeling, the geographic information system (GIS) is utilized to generate site-specific models. Thus a C# code is developed to generate the particles of a given landslide site, which produces realistic particle mass and actual complicated boundaries for the SPH soil model. With GIS enabled, complex topography and irregular boundary can be accurately and easily generated. To improve the accuracy of such a complicated landslide simulation, a modified approach is proposed to implement the complex topography representation of landslide mass and the effective treatments of the irregular and complicated boundaries generated from the GIS. The SPH soil code is applied to the well-known Daguangbao landslide triggered by Wenchuan Earthquake in 2008. The topographies after failure are compared with those obtained from field collected data, and good agreement is found.
  • [1] DUNCAN J M. State of the art: limit equilibrium and finite element analysis of slopes[J]. J Geotech Eng, 1996, 122: 577-596.
    [2] HAMMOURI N A, MALKAWI A I H, YAMIN M M A. Stability analysis of slopes using the finite element method and limiting equilibrium approach[J]. Bull EngGeol Environ, 2008, 67: 471-478.
    [3] SCAVIA C. A method for the study of crack propagation in rock structures[J]. Géotechnique, 1995, 45(3): 447-463.
    [4] EBERHARDT E, STEAD D, COGGAN J S. Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 69-87.
    [5] MISHRA B K, RAJAMANI R K. The discrete element method for the simulation of ball mills[J]. Applied Mathematical Modelling, 1992, 16(11): 598-604.
    [6] SHI G H, GOODMAN R E. Discontinuous deformation analysis[C]// 25th US Symp on Rock Mech. Evanston, 1984.
    [7] BELYTSCHKO T, LU Y Y, GU L. Element‐free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
    [8] CHOPARD B, DROZ M. Cellular automata modeling of physical systems[J]. Cambridge: Cambridge University Press, 1998.
    [9] LIU G R, LIU M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. World Scientific, 2003.
    [10] DOUGALL S, HUNGR O. A model for the analysis of rapid landslide motion across three-dimensional terrain[J]. Canadian Geotechnical Journal, 2004, 41(6): 1084-1097.
    [11] PASTOR M, HADDAD B, SORBINO G, et al. A depth‐integrated, coupled SPH model for flow-like landslides and related phenomena[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(2): 143-172.
    [12] HADDAD B, PASTOR M, PALACIOS D, et al. A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): Sensitivity analysis and runout simulation[J]. Engineering Geology, 2010, 114(3): 312-329.
    [13] HUANG Y, ZHANG W, XU Q, et al. Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics[J]. Landslides, 2012, 9(2): 275-283.
    [14] SAKAI H, MAEDA K. Seepage failure and erosion mechanism of granular material with evolution of air bubbles using SPH[C]// Powders and Grains 2009: Proceedings of the 6th International Conference on Micromechanics of Granular Media. Colorado, 2009: 1001-1004.
    [15] BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570.
    [16] CHEN W F, MIZUNO E. Nonlinear analysis in soil mechanics[M]// Developments in Geotechnical Engineering, Amsterdam: Elsevier, 1990: 672.
    [17] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399-406.
    [18] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain lagrangian hydrodynamics: a three- dimensional SPH code for dynamic material response[J]. Journal of Computational Physics, 1993, 109(1): 67-75.
    [19] MORRIS J P, FOX P J, ZHU Y. Modeling low reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226.
    [20] LIU M B, SHAO J R, CHANG J. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China Technological Sciences, 2012, 55(1): 244-254.
    [21] MONAGHAN J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30: 543-574.
    [22] LATTANZIO J C, MONAGHAN J J, PONGRACIC H, et al. Controlling penetration[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(2): 591-598.
    [23] MONAGHAN J J. On the problem of penetration in particle methods[J]. Journal of Computational physics, 1989, 82(1): 1-15.
    [24] HUANG R, PEI X, FAN X, et al. The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China[J]. Landslides. 2012, 9(1): 131-142.
    [25] ZHANG Y, CHEN G, ZHENG L, et al. Numerical analysis of the largest landslide induced by the Wenchuan Earthquake, May 12, 2008 Using DDA[C]// Proceedings of the International Symposium on Earthquake-Induced Landslides, Kiryu, Japan, 2012. 617-626.
  • 期刊类型引用(3)

    1. 朱洪涛. 复变函数两向不等压矩形巷道稳定性与支护优化研究. 煤炭工程. 2025(02): 133-141 . 百度学术
    2. 景所林,文志杰,左宇军,李秋菊,郝鹏. 基于统一强度准则的巷道围岩应力梯度解析解及合理支护预应力:案例研究(英文). Journal of Central South University. 2025(02): 449-468 . 百度学术
    3. 刘春康,王洪江,李浩. 非等压应力场下充填钻孔主应力差分布规律. 中国有色金属学报. 2024(05): 1743-1756 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2014-12-02
  • 发布日期:  2016-01-19

目录

    /

    返回文章
    返回